Abstract:
Various systems and methods are described for performing fractionally spaced time domain equalization (TEQ). One embodiment is a method implemented in a communication system for training a fractionally spaced time domain equalizer (TEQ). The method comprises performing an initialization phase, averaging a received signal in the system to reduce effects of noise in a channel, determining a channel estimate, and aligning an ideal reference signal with the received signal. The method further comprises updating a target response filter according to a non-integer multiple of a base sampling rate, determining an adaptation error based on useful information both inside and outside a Nyquist band of the TEQ, and updating the TEQ according to the adaptation error.
Abstract:
Various systems and methods are described for performing fractionally spaced time domain equalization (TEQ). One embodiment is a method implemented in a communication system for training a fractionally spaced time domain equalizer (TEQ). The method comprises performing an initialization phase, averaging a received signal in the system to reduce effects of noise in a channel, determining a channel estimate, and aligning an ideal reference signal with the received signal. The method further comprises updating a target response filter according to a non-integer multiple of a base sampling rate, determining an adaptation error based on useful information both inside and outside a Nyquist band of the TEQ, and updating the TEQ according to the adaptation error.