摘要:
A system that incorporates teachings of the present disclosure may include, for example, an ionizing radiation sensor having a first scintillator for generating photons from incoming ionizing radiation, an imaging intensifier for amplifying the photons, and an electron-multiplying charge-coupled device (EMCCD) coupled to the imaging intensifier for sensing the amplified photons generated by the imaging intensifier. Additional embodiments are disclosed.
摘要:
Method and system for generating an image of the radiation density of a source of photons located in an object wherein Compton scattering and non-Compton scattering events are detected and contained within data used for image reconstruction. The system includes a multiple pinhole collimator, a position sensitive scintillation detector as used in standard Gamma cameras, and a silicon pad detector array inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole systems, is reduced by using the extra information from the detected Compton scattering events. For properly selected pinhole spacing, this leads to a significantly improved image quality. A valuable enhancement can be achieved when adding only a small fraction of gamma rays with reduced angular ambiguity. The system does not require a highly optimized Compton camera behind the collimator.
摘要:
A system that incorporates teachings of the present disclosure may include, for example, an ionizing radiation sensor having a first scintillator for generating photons from incoming ionizing radiation, an imaging intensifier for amplifying the photons, and an electron-multiplying charge-coupled device (EMCCD) coupled to the imaging intensifier for sensing the amplified photons generated by the imaging intensifier. Additional embodiments are disclosed.
摘要:
A scintillation spectrometer provides improved resolution by ensuring that photons generated by scintillation events occurring in different locations within the scintillation material generate similar light profiles on the photo-detector, thereby making the output signal less sensitive to the initial interaction site and enabling more effective de-convolution of raw data. This is achieved in different ways, such as by: limiting the exit window of the scintillation crystal, introducing a spacer between the scintillation crystal and the detector window, or providing a crystal that is longer than necessary to stop gamma rays.
摘要:
Different geometries of scintillation spectrometers are disclosed which provide improved resolution over prior art scintillation spectrometers. By ensuring that photons generated by scintillation events occurring in different locations within the scintillation material generate similar light profiles on the photo-detector, the output signal is made less sensitive to the initial interaction site. This can be achieved in a number of ways, such as: by limiting the exit window of the scintillation crystal to a smaller detector, by introducing an optical spacer (94) between the scintillation crystal and detector (99), and/or by making the crystal longer than necessary to stop the gamma rays. A principal advantage of these new geometries is that deconvolution of the raw-data is more effective, thus improving resolution.
摘要:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a collimator having at least one aperture and a fluorescence detector. The collimator can be positioned next to a compound. The compound can emit fluorescence X-rays when impacted by an X-ray beam generated by an X-ray source. The collimator can absorb at least a first portion of the fluorescence X-rays emitted by the compound and release at least a second portion of the fluorescence X-rays at the at least one aperture. The second portion of the fluorescence X-rays released by the at least one aperture have known directional information based on a position of the collimator. The fluorescence detector can detect the second portion of the fluorescence X-rays released by the at least one aperture. A three-dimensional (3-D) rendering of an elemental distribution of the compound can be determined from the fluorescence X-rays detected and the directional information. Additional embodiments are disclosed.
摘要:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a collimator having at least one aperture and a fluorescence detector. The collimator can be positioned next to a compound. The compound can emit fluorescence X-rays when impacted by an X-ray beam generated by an X-ray source. The collimator can absorb at least a first portion of the fluorescence X-rays emitted by the compound and release at least a second portion of the fluorescence X-rays at the at least one aperture. The second portion of the fluorescence X-rays released by the at least one aperture have known directional information based on a position of the collimator. The fluorescence detector can detect the second portion of the fluorescence X-rays released by the at least one aperture. A three-dimensional (3-D) rendering of an elemental distribution of the compound can be determined from the fluorescence X-rays detected and the directional information. Additional embodiments are disclosed.
摘要:
A scintillation spectrometer provides improved resolution by ensuring that photons generated by scintillation events occurring in different locations within the scintillation material generate similar light profiles on the photo-detector, thereby making the output signal less sensitive to the initial interaction site and enabling more effective de-convolution of raw data. This is achieved in different ways, such as by: limiting the exit window of the scintillation crystal, introducing a spacer between the scintillation crystal and the detector window, or providing a crystal that is longer than necessary to stop gamma rays.