Abstract:
A radio configured to dynamically control cancellation of undesired signals in an audio stream. The radio includes a noise cancellation processor configured to receive an audio stream from a user and to alter information in the audio stream by filtering out undesired signals in the audio stream. The radio also includes a receiving component configured to receive a data packet from a remote device, to retrieve configuration information from the data packet, and to dynamically apply the configuration information, while the radio is being used by a user, to settings associated with the noise cancellation processor. A dynamically enabled noise cancellation processor suppresses undesired signals associated with a subsequent incoming audio stream provided by the user and transmits at least one of an altered audio stream or an unaltered audio stream to the remote device.
Abstract:
A technique for a secondary communication system to utilize spectrum designated to another (or primary) communication system is provided. By ranking a plurality of secondary base stations based on base station transmit power, calculated required transmit power and path loss, a set of criteria is developed for selecting a highest ranked secondary base station for operation within a primary's spectrum. The ranking may be adapted based on mobility of the secondary's subscriber; and as such the secondary system communicates within the primary's spectrum using the adaptively ranked base stations. Channel selection may also be ranked. The technique and apparatus allows a cognitive radio (CR) network to operate within an incumbent network's spectrum.
Abstract:
Efficient frequency spectrum sharing between at least one incumbent communication system(s) (102, 152) and at least one cognitive radio (CR) system (105) is provided. The incumbent system's system parameters and CR system's operational requirements are copied to a mirrored database (106B). The mirrored database (106B) is controlled by a either a central authority (108) or a database manager having delegated authority (508). The mirrored database (106B) is accessed by the CR system (105). The mirrored database (106B) can be modified and updated by the central authority (108) or delegated database manager (508) to correct for interference detected in the incumbent system caused (152) by the cognitive radio system (105). The cognitive radio system (105) utilizes the updated mirrored database (106B) to avoid interfering with the incumbent system (102, 152) to determine CR system operating parameters thus enhancing the ability to share spectrum.
Abstract:
Efficient frequency spectrum sharing between at least one incumbent communication system(s) (102, 152) and at least one cognitive radio (CR) system (105) is provided. The incumbent system's system parameters and CR system's operational requirements are copied to a mirrored database (106B). The mirrored database (106B) is controlled by a either a central authority (108) or a database manager having delegated authority (508). The mirrored database (106B) is accessed by the CR system (105). The mirrored database (106B) can be modified and updated by the central authority (108) or delegated database manager (508) to correct for interference detected in the incumbent system caused (152) by the cognitive radio system (105). The cognitive radio system (105) utilizes the updated mirrored database (106B) to avoid interfering with the incumbent system (102, 152) to determine CR system operating parameters_thus enhancing the ability to share spectrum.
Abstract:
A technique for a secondary communication system to utilize spectrum designated to another (or primary) communication system is provided. By ranking a plurality of secondary base stations based on base station transmit power, calculated required transmit power and path loss, a set of criteria is developed for selecting a highest ranked secondary base station for operation within a primary's spectrum. The ranking may be adapted based on mobility of the secondary's subscriber; and as such the secondary system communicates within the primary's spectrum using the adaptively ranked base stations. Channel selection may also be ranked. The technique and apparatus allows a cognitive radio (CR) network to operate within an incumbent network's spectrum.
Abstract:
A monitoring device (141) can include a transceiver (202) to receive a radio signal, and a controller (203) communicatively coupled to the transceiver to detect an infringement on the radio signal and report the infringement to a database. One or more policies within the database can be updated to mitigate the infringement. The monitoring device can also detect whether a cognitive radio (111) is generating interference on a primary spectrum used by an incumbent device (151). Other embodiments are disclosed.
Abstract:
A radio configured to dynamically control cancellation of undesired signals in an audio stream. The radio includes a noise cancellation processor configured to receive an audio stream from a user and to alter information in the audio stream by filtering out undesired signals in the audio stream. The radio also includes a receiving component configured to receive a data packet from a remote device, to retrieve configuration information from the data packet, and to dynamically apply the configuration information, while the radio is being used by a user, to settings associated with the noise cancellation processor. A dynamically enabled noise cancellation processor suppresses undesired signals associated with a subsequent incoming audio stream provided by the user and transmits at least one of an altered audio stream or an unaltered audio stream to the remote device.
Abstract:
A technique for a secondary communication system to utilize spectrum designated to another (or primary) communication system is provided. By ranking a plurality of secondary base stations based on base station transmit power, calculated required transmit power and path loss, a set of criteria is developed for selecting a highest ranked secondary base station for operation within a primary's spectrum. The ranking may be adapted based on mobility of the secondary's subscriber; and as such the secondary system communicates within the primary's spectrum using the adaptively ranked base stations. Channel selection may also be ranked. The technique and apparatus allows a cognitive radio (CR) network to operate within an incumbent network's spectrum.
Abstract:
A technique for a secondary communication system to utilize spectrum designated to another (or primary) communication system is provided. By ranking a plurality of secondary base stations based on base station transmit power, calculated required transmit power and path loss, a set of criteria is developed for selecting a highest ranked secondary base station for operation within a primary's spectrum. The ranking may be adapted based on mobility of the secondary's subscriber; and as such the secondary system communicates within the primary's spectrum using the adaptively ranked base stations. Channel selection may also be ranked. The technique and apparatus allows a cognitive radio (CR) network to operate within an incumbent network's spectrum.
Abstract:
A monitoring device (141) can include a transceiver (202) to receive a radio signal, and a controller (203) communicatively coupled to the transceiver to detect an infringement on the radio signal and report the infringement to a database. One or more policies within the database can be updated to mitigate the infringement. The monitoring device can also detect whether a cognitive radio (111) is generating interference on a primary spectrum used by an incumbent device (151). Other embodiments are disclosed.