摘要:
A method is disclosed for cryptographic peer discovery, authentication, and authorization. According to one embodiment, a data packet, which is addressed to a destination device other than an intermediary network device, is intercepted at the intermediary network device. The data packet contains a request and a group identifier. A shared secret cryptographic key, which is mapped to the group identifier, is selected. A challenge is sent toward an upstream device from whence the data packet came. A response is received. A verification value is generated based on the cryptographic key and the challenge. It is determined whether the response matches the verification value. If the response matches the verification value, then it is determined whether the request is allowed by an authorization set that is mapped to the group identifier. If the request is allowed, then a policy of the intermediary network device is configured based on the request.
摘要:
A method is disclosed for cryptographic peer discovery, authentication, and authorization. According to one embodiment, a data packet, which is addressed to a destination device other than an intermediary network device, is intercepted at the intermediary network device. The data packet contains a request and a group identifier. A shared secret cryptographic key, which is mapped to the group identifier, is selected. A challenge is sent toward an upstream device from whence the data packet came. A response is received. A verification value is generated based on the cryptographic key and the challenge. It is determined whether the response matches the verification value. If the response matches the verification value, then it is determined whether the request is allowed by an authorization set that is mapped to the group identifier. If the request is allowed, then a policy of the intermediary network device is configured based on the request.
摘要:
A method is disclosed for cryptographic peer discovery, authentication, and authorization. According to one embodiment, a data packet, which is addressed to a destination device other than an intermediary network device, is intercepted at the intermediary network device. The data packet contains a request and a group identifier. A shared secret cryptographic key, which is mapped to the group identifier, is selected. A challenge is sent toward an upstream device from whence the data packet came. A response is received. A verification value is generated based on the cryptographic key and the challenge. It is determined whether the response matches the verification value. If the response matches the verification value, then it is determined whether the request is allowed by an authorization set that is mapped to the group identifier. If the request is allowed, then a policy of the intermediary network device is configured based on the request.
摘要:
Disclosed are methods and apparatus for facilitating translation of packet addresses (or ports) by one or more translation devices (e.g., Network Address Translation or NAT devices) using a specialized protocol to handle an address (or port) that is used to form part of a payload. In one implementation, this specialized protocol is referred to as Network Layer Signaling (NLS). As a packet traverses along a path containing one or more translation devices, each translation device is configured to translate an address (or port) of such packet's IP header if the packet is traversing between different domains (e.g., traversing between a private and public domain or between two different private domains). One or more of these translation devices may also be configured to implement the specialized protocol which includes translation device traversal mechanisms for detecting whether the traversal path contains a translation device that fails to implement such specialized protocol. When such a failure is detected, recovery mechanisms are also triggered.
摘要:
Disclosed are methods and apparatus for generating, as well as processing data that is traversing (or will be traversing) a translation device, such as a Network Address Translation (NAT) device. In one embodiment, a method of sending data from a first node to a second node is disclosed. The method includes sending a data packet having a header and a payload whereby the header includes (i) one or more fields which identify an application type that uses addresses and indicates that there is a tag present in the payload that serves as a substitute for an address and (ii) an address and whereby the payload includes a tag that is positioned so that it serves as a substitution for an address that is used the identified application. The one or more fields are associated with the address of the header.