摘要:
A method is disclosed for predicting attenuation in real time while drilling using a portable continuous wave technology (CWT) tool to obtain amplitude spectra as a function of frequency for the cuttings at the rig site. Attenuation is predicted, and plotted as a function of frequency to monitor hydrocarbon content changes, fluid front moves, and pressure mapping or plotting attenuation as a function of depth to calibrate high resolution seismic data and interpret amplitudes for formation permeability determination.
摘要:
Disclosed is a new method for providing accurate real time predictions of pore pressure and fracture gradient, at the rig site by determining the wave velocity from drill cuttings by a portable continuous wave technology (CWT) tool that measures drill cuttings at high resonant frequency and then using the velocity obtained in combination with the novel method of the present invention to arrive at accurate predictions for pore pressure and fracture gradient. The new technique offers real time pore pressure prediction at the rig site with small error margin that is not otherwise available using seismic, VSP, or check shot velocities in exploration.
摘要:
An apparatus and methods for acoustically analyzing a fluid sample and determining one or more properties of the sample are disclosed by the present invention. The apparatus comprises a chamber, a transmitter positioned within the chamber for transmitting an acoustic signal through the fluid, a reflector movably positioned within the fluid inside the chamber for reflecting the acoustic signal, and a receiver positioned within the chamber for detecting reflections of the acoustic signal. The methods employ the use of a transmitter, a reflector movably positioned within the fluid inside the chamber, and a receiver to characterize the fluid sample based on one or more of its acoustic properties.