Abstract:
A sensor device includes a detector portion, plural metal terminals that transmit a detection signal from the detector portion, and a housing portion, which integrally supports the detector portion and metal terminals, formed from resin, leading end portions of the plural metal terminals configuring connector terminals, and the plural metal terminals being disposed with at least one portion thereof aligned when seen from the axial direction of the connector terminals, wherein protruding portions protruding in a direction differing from the axial direction of the connector terminals are provided on the metal terminals.
Abstract:
In an overlapping head including a plurality of recording head chips overlapped to each other, a color shift can occur between a color recorded by an overlapping region and a color recorded by a non-overlapping region, which cannot be corrected by a density correction using head shading or the like. To correct such a color shift, a test pattern is recorded by the overlapping region and the non-overlapping region and colors of the recorded test pattern are measured. Color correction data to be used in correction of colors of an image to be recorded is generated based on a result of the measurement of the colors.
Abstract:
In the present invention, a first calculation unit calculates, based on image data obtained by reading with a reading unit a plurality of patches formed on a printing medium by a plurality of nozzle regions constituting nozzle array of a printing head, respective color specification values of a plurality of correction regions corresponding to a plurality of nozzle regions constituting the nozzle array. Then, a target value setting unit sets, based on the calculated color specification values of the plurality of correction regions, a target color specification value of the patch. Further, a second calculation unit calculates a difference between each of the color specification values of the plurality of correction regions and the target color specification value as a correction amount. After that, based on the correction amount calculated, image data corresponding to an image printed by each of the plurality of nozzle regions are corrected.
Abstract:
There is provided an image processing method in which in a full line type inkjet printer using a connecting head having an overlap region, even if a conveyance direction of a print medium is more or less inclined, a density change or degradation of graininess is not introduced. Therefore, an image data in a non-overlap region is distributed to a plurality of nozzle arrays such that ink is ejected from all the plurality of the nozzle arrays. On the other hand, a region where a print allowance rate changes in the overlap region is divided into plural regions, and the image data is distributed to the plurality of the nozzle arrays such that these regions are located to be shifted.
Abstract:
When recording is performed in a pixel region by M (M is an integer equal to or larger than 2) passes with N (N is an integer equal to or larger than 2) recording element groups, density variation due to a deviation between recording positions of dots that are recorded by different passes is suppressed while a load of data processing is decreased.First, multivalued image data (24-1 to 24-2) corresponding to the M passes is generated from input image data, and the multivalued image data corresponding to the M passes is quantized to generate quantized data (26-1 to 26-2) corresponding to the M passes. Then, the quantized data corresponding to the M passes is divided into quantized data being complements of each other and corresponding to the N recording element groups. Accordingly, the quantized data (28-1 to 28-4) corresponding to the M passes for the N recording element groups is obtained. With this configuration, the density variation due to the deviation between the recording positions by the M passes can be suppressed. Also, since the number of pieces of data subjected to the quantization is small, the load of the quantization can be decreased.
Abstract:
The image processing apparatus executes quantization processing of second multi-valued image data that corresponds to a second relative movement of a plurality of relative movements based on first multi-valued image data that corresponds to a first relative movement of the plurality of relative movements, and executes quantization processing of the first multi-valued image data based on the second multi-valued image data. This makes it possible to output a high-quality image having excellent robustness and reduced graininess by controlling the overlap rate of dots that are printed by the first relative movement and the dots that are printed by the second relative movement.
Abstract:
When dividing multi-valued data and generating data for two-pass multi-pass printing, in addition to divided multi-valued data that are divided for each of the two passes, divided multi-valued data that is common to both of the two passes is generated. Moreover, quantized data of that common multi-valued data is reflected onto the quantized data for each pass. Furthermore, when generating quantized data, division ratios that are used when generating the common data by the multi-valued data division described above are set according to the image characteristics (whether or not the area is flesh color) of the multi-valued data. Thereby, it is possible to perform high-quality printing regardless of the image characteristics by taking a suitable balance between suppressing density unevenness and suppressing graininess.
Abstract:
A printing apparatus and a printing method are provided which, even if a print position misalignment occurs between a plurality of print scans during a multipass printing, can minimize density variations in a unit area reliably and stably, thus producing an image without density unevenness. For this purpose, multi-grayscale-level image data is converted into a plurality of dot arrangement patterns that determine individual subpixels either to be printed or not to be printed with a dot. Then, these dot arrangement patterns are printed overlappingly on a print medium in different print scans of the print head. At this time, the plurality of dot arrangement patterns are so arranged that, if these dot arrangement patterns are shifted from one another, a change in the dot-overlapping area ratio will be smaller than when the dots are arranged separately so that they do not overlap one another.
Abstract:
In order to eliminate image deterioration based on the characteristics of an output device upon execution of edge emphasis processing, an image processing apparatus includes a setting unit which sets a print characteristic on the print medium, a region setting unit which sets a region, a brightness value derivation unit which derives brightness values, a first derivative derivation which derives first derivatives of the brightness values, an edge direction determination unit which determines an edge direction of brightness, an emphasis level determination unit which determines an emphasis level of a pixel value based on the first derivatives, and a replacement unit which calculates second derivatives of brightness values and replaces a pixel value of a pixel of interest based on the sign of the second derivative.
Abstract:
The present invention provides an image searching device that searches a print target image adapted for a printable area only by setting a template for the printable area and a search condition necessary to search the print target image. The image searching device inputs shape information on the printable area. Then, the image searching device sets the image search condition. Then, the image searching device searches the print target image from a plurality of images on the basis of the shape information on the printable area, and the image search condition. According to the image searching device, upon printing of an image in a specially-shaped printable area, a print target image adapted for the printable area can be automatically searched only by setting a shape of the printable area, and an image search condition, resulting in improvement of searching efficiency.