Abstract:
A ferroelectric liquid crystal display device of the present invention includes: a pair of substrates; a ferroelectric liquid crystal layer provided between the pair of substrates; and an electrode for applying a voltage to the ferroelectric liquid crystal layer, wherein the ferroelectric liquid crystal layer has bent smectic layers, and an effective bend angle .theta.L of the bent smectic layers satisfies the relationship: .theta.Leff>.theta.L>0.degree. in a temperature range in which the ferroelectric liquid crystal display device is stored, where an effective bend angle of the smectic layers in a first state is .theta.Leff, the first state being obtained by cooling the ferroelectric liquid crystal layer from a temperature higher than a phase transition temperature of a chiral smectic C phase--a smectic A phase to a temperature not higher than a phase transition temperature of the chiral smectic C phase--the smectic A phase.
Abstract:
A liquid crystal display unit including a plurality of subpixels in each pixel provides superior gradation over a wide viewing angle, and is produced with no increase in manufacturing cost and no deterioration of desired properties (such as reduction in brightness, contrast and response). No additional manufacturing step is required since a control capacitor electrode is formed at the same time as source and drain electrodes constituting a thin-film transistor. By controlling the ratio of display area and the difference in applied voltage of the subpixels, preferable viewing angle properties are obtained. The display properties at the boundary of subpixels are improved by controlling the gap width and the direction of boundary of the subpixels, thus providing a bright display.
Abstract:
A liquid crystal display unit including a plurality of subpixels in each pixel provides superior gradation over a wide viewing angle, and is produced with no increase in manufacturing cost and no deterioration of desired properties (such as reduction in brightness, contrast and response). No additional manufacturing step is required since a control capacitor electrode is formed at the same time as source and drain electrodes constituting a thin-film transistor. By controlling the ratio of display area and the difference in applied voltage of the subpixels, preferable viewing angle properties are obtained. The display properties at the boundary of subpixels are improved by controlling the gap width and the direction of boundary of the subpixels, thus providing a bright display.