摘要:
This disclosure describes an operational mode of a telemetry module. A device, such as a programming device, operating in accordance with the techniques of this disclosure determines that a transceiver of an implantable medical device is operating in a duty cycled operational mode that includes at least one interval during which the transceiver is powered down interleaved with intervals during which the transceiver is powered up, e.g., for transmitting or receiving communications over an established communication session. The programming device is configured to transmit information during the at least one interval in which the transceiver of the implantable medical device is powered down. Doing so ensures that the channel over which the programmer and implantable medical device communicate will not be usurped by another device.
摘要:
This disclosure describes an operational mode of a telemetry module. A device, such as a programming device, operating in accordance with the techniques of this disclosure determines that a transceiver of an implantable medical device is operating in a duty cycled operational mode that includes at least one interval during which the transceiver is powered down interleaved with intervals during which the transceiver is powered up, e.g., for transmitting or receiving communications over an established communication session. The programming device is configured to transmit information during the at least one interval in which the transceiver of the implantable medical device is powered down. Doing so ensures that the channel over which the programmer and implantable medical device communicate will not be usurped by another device.
摘要:
A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channels in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels. The falsing protection algorithm restricts those channels from sniff processing likely to provide a false indication of a wake-up signal, such that sniff processing can aborted, prevented, limited or otherwise altered to conserve power consumption.
摘要:
A low power multiple channel receiver mixing architecture for detecting wake-up signals over multiple communication channles in sniff processing performed in an implantable medical device (IMD). The architecture includes a direct conversion real receiver configured to scan a selected center channel and a Weaver receiver configured in parallel to the direct conversion real receiver to simultaneously scan side channels, together simultaneously detecting whether a wake-up signal is being received over the center and side channels with minimal power consumption. The architecture further utilizes a falsing protection algorithm that reduces power consumption during sniff operations by inhibiting the sniffing of channels likely to provide a false indication of a wake-up signal based the presence of unwanted signals on those channels. The falsing protection algorithm restricts those channels from sniff processing likely to provide a false indication of a wake-up signal, such that sniff processing can aborted, prevented, limited or otherwise altered to conserve power consumption.
摘要:
A device, such as an IMD, operating in accordance with the techniques of this disclosure detects a telemetry configuration event and, in response to the telemetry configuration event, configures a telemetry module of the IMD to operate in a duty cycled operational mode. The duty cycled operational mode includes a plurality of intervals during which a transceiver of the telemetry module is powered down interleaved with intervals during which the transceiver is powered up, e.g., for transmitting or receiving communications over an established communication session. The power freed up during the intervals in which the transceiver is powered down may be allocated for use by other components of the IMD. The telemetry module maintains information regarding the established communication session during the plurality of intervals during which the transceiver is powered down such that transmit and receive operations may immediately begin during intervals in which the transceiver is powered up.