摘要:
A method, computer system, and computer memory medium optimizing a transductive model Mx suitable for use in data analysis and for determining a prognostic outcome specific to a particular subject are disclosed. The particular subject may be represented by an input vector, which includes a number of variable features in relation to a scenario of interest. Samples from a global dataset D also having the same features relating to the scenario and for which the outcome is known are determined. In an embodiment, a subset of the variable features within a neighborhood formed by the samples are ranked in order of importance to an outcome. The prognostic transductive model is then created based, at least in part, on the subset, the ranking, and the neighborhood. The subset and the neighborhood are then optimized until the accuracy of the transductive model is maximized.
摘要:
A neural network module is provided. It comprises an input layer comprising one or more input nodes configured to receive gene expression data. It also has a rule base layer comprising one or more rule nodes and an output layer comprising one or more output nodes configured to output one or more conditions. It also comprises an adaptive component configured to extract one or more rules from the rule base layer representing relationships between the gene expression data and the one or more conditions. Methods and systems using the module are disclosed as well as specific profiles utilising the system.
摘要:
A neural network module including an input layer having one or more input nodes arranged to receive input data, a rule base layer having one or more rule nodes, an output layer having one or more output nodes, and an adaptive component arranged to aggregate selected two or more rule nodes in the rule base layer based on the input data, an adaptive learning system having one or more of the neural network modules, related methods of implementing the neural network module and an adaptive learning system, and a neural network program.
摘要:
A method, computer system, and computer memory medium optimizing a transductive model Mx suitable for use in data analysis and for determining a prognostic outcome specific to a particular subject are disclosed. The particular subject may be represented by an input vector, which includes a number of variable features in relation to a scenario of interest. Samples from a global dataset D also having the same features relating to the scenario and for which the outcome is known are determined. In an embodiment, a subset of the variable features within a neighborhood formed by the samples are ranked in order of importance to an outcome. The prognostic transductive model is then created based, at least in part, on the subset, the ranking, and the neighborhood. The subset and the neighborhood are then optimized until the accuracy of the transductive model is maximized.
摘要:
A method, computer system, and computer memory medium optimizing a transductive model Mx suitable for use in data analysis and for determining a prognostic outcome specific to a particular subject are disclosed. The particular subject may be represented by an input vector, which includes a number of variable features in relation to a scenario of interest. Samples from a global dataset D also having the same features relating to the scenario and for which the outcome is known are determined. In an embodiment, a subset of the variable features within a neighborhood formed by the samples are ranked in order of importance to an outcome. The prognostic transductive model is then created based, at least in part, on the subset, the ranking, and the neighborhood. The subset and the neighborhood are then optimized until the accuracy of the transductive model is maximized.
摘要:
A method of optimising a model Mx suitable for use in data analysis and determining a prognostic outcome specific to a particular subject (input vector x), the subject comprising a number of variable features in relation to a scenario of interest for which there is a global dataset D of samples also having the same features relating to the scenario, and for which the outcome is known is disclosed. In one implementation, the method includes: (a) determining what number and a subset Vx of variable features will be used in assessing the outcome for the input vector x; (b) determining what number Kx of samples from within the global data set D will form a neighbourhood about x; (c) selecting suitable Kx samples from the global data set which have the variable features that most closely accord to the variable features of the particular subject x to form the neighbourhood Dx; (d) ranking the Vx variable features within the neighbourhood Dx in order of importance to the outcome of vector x and obtaining a weight vector Wx for all variable features Vx; (e) creating a prognostic model Mx, having a set of model parameters Px and the other parameters from (a)-(d); (f) testing the accuracy of the model Mx at e) for each sample from Dx; (g) storing both the accuracy from (f), and the model parameters developed in (a) to (e); (h) repeating (a) and/or (b) whilst applying an optimisation procedure to optimise Vx and/or Kx, to determine their optimal values, before repeating (c)-(h) until maximum accuracy at (f) is achieved.