Abstract:
A method (400) is disclosed of extracting factoids from text repositories, with the factoids being associated with a given factoid category. The method (400) starts by training a classifier (230) to recognise factoids relevant to that given factoid category. Documents or document summaries relevant to the given factoid category is next collected (410) from the text repositories. Sentences having a predetermined association to the given factoid category is extracted (420) from the documents or said document summaries. Those sentences are classified (440), in a noisy environment, using the classifier (230) to extract snippets containing phrases relevant to the given factoid category. It is the extracted snippets that are the factoid associated with the given factoid category.
Abstract:
A method (400) is disclosed of extracting factoids from text repositories, with the factoids being associated with a given factoid category. The method (400) starts by training a classifier (230) to recognize factoids relevant to that given factoid category. Documents or document summaries relevant to the given factoid category is next collected (410) from the text repositories. Sentences having a predetermined association to the given factoid category is extracted (420) from the documents or said document summaries. Those sentences are classified (440), in a noisy environment, using the classifier (230) to extract snippets containing phrases relevant to the given factoid category. It is the extracted snippets that are the factoid associated with the given factoid category.