CORE-LEVEL HIGH RESOLUTION PETROPHYSICAL CHARACTERIZATION METHOD

    公开(公告)号:US20220065096A1

    公开(公告)日:2022-03-03

    申请号:US17010372

    申请日:2020-09-02

    摘要: A method for characterizing a subsurface formation includes receiving image data of the subsurface formation obtained by a sensor tool and receiving a plurality of non-image data logs, each non-image data log being obtained by a different type of sensor tool. The method also includes performing an electrofacies analysis on the plurality of non-image data logs where the electrofacies analysis includes defining clusters wherein each cluster has a similar property to provide a plurality of electrofacies blocks with each electrofacies block representing a depth interval. The method further includes partitioning the image data into multiple high-resolution depth segments that share a similar property, feature, and/or pattern for each electrofacies block and assigning data from the plurality of non-image data logs into a corresponding high-resolution depth segment to provide a high-resolution data log that characterizes the subsurface formation.

    Core-level high resolution petrophysical characterization method

    公开(公告)号:US11727583B2

    公开(公告)日:2023-08-15

    申请号:US17010372

    申请日:2020-09-02

    摘要: A method for characterizing a subsurface formation includes receiving image data of the subsurface formation obtained by a sensor tool and receiving a plurality of non-image data logs, each non-image data log being obtained by a different type of sensor tool. The method also includes performing an electrofacies analysis on the plurality of non-image data logs where the electrofacies analysis includes defining clusters wherein each cluster has a similar property to provide a plurality of electrofacies blocks with each electrofacies block representing a depth interval. The method further includes partitioning the image data into multiple high-resolution depth segments that share a similar property, feature, and/or pattern for each electrofacies block and assigning data from the plurality of non-image data logs into a corresponding high-resolution depth segment to provide a high-resolution data log that characterizes the subsurface formation.