Method and Apparatus for Real-Teim Direct Surface Fouling and Scale Monitoring of Heat Transfer Surfaces

    公开(公告)号:US20230119268A1

    公开(公告)日:2023-04-20

    申请号:US17914346

    申请日:2020-03-25

    IPC分类号: G01N17/00 F28F19/00

    摘要: A heat transfer surface monitoring (HTSM) system and cell for direct detection and monitoring of fouling, scaling, corrosion, and pitting of heat transfer surfaces. The system has a heat transfer plate (HTP) that has a heat transfer monitoring surface (HTMS). The system also includes an edge-lit light guide and light source to illuminate the HTMS, a fluid flow channel module, a heating/cooling module, a surface imaging module to view the HTMS, and a system controller. The environment is controlled to mimic the environment within heat exchange equipment, which are indicative of the changes inside heat exchange equipment. Output of signals relating to the HTMS are used as a guide mitigate problems related to the monitored heat exchange equipment. The system can also use a heat exchanger cylindrical tube with slit light guides along the tube, and the surface imaging module views the inner surface of the heat exchanger cylindrical tube.

    Method and apparatus for real-time direct membrane monitoring

    公开(公告)号:US10960357B2

    公开(公告)日:2021-03-30

    申请号:US16640713

    申请日:2018-04-23

    摘要: A membrane surface monitoring system (MSM) and membrane surface monitoring cell for direct and unambiguous detection of membrane surface fouling and mineral scaling. The system includes a membrane surface monitoring system cell, a control valve, a retentate flow meter/transmitter and a controller. The MSM cell has a visually-observable membrane, an edge-lit light guide, an edge illumination light source, a retentate module, and a permeate module. A pressurized inlet stream is fed into the MSM cell. The feed contacts a membrane sheet, leading to membrane-based separation operation to produce retentate and permeate streams. The MSM cell integrates surface illumination and imaging components to allow direct real-time visualization and spectral imaging of the membrane surface in real time. The pressure on the feed-side of the MSM cells is approximately that of the membrane plant element being monitored such that the plant control system can adjust plant operating conditions.

    Method and apparatus for real-time direct membrane monitoring

    公开(公告)号:US11826708B2

    公开(公告)日:2023-11-28

    申请号:US17217818

    申请日:2021-03-30

    摘要: A membrane surface monitoring system (MSM) and membrane surface monitoring cell for direct and unambiguous detection of membrane surface fouling and mineral scaling. The system includes a membrane surface monitoring system cell, a control valve, a retentate flow meter/transmitter and a controller. The MSM cell has a visually-observable membrane, an edge-lit light guide, an edge illumination light source, a retentate module, and a permeate module. A pressurized inlet stream is fed into the MSM cell. The feed contacts a membrane sheet, leading to membrane-based separation operation to produce retentate and permeate streams. The MSM cell integrates surface illumination and imaging components to allow direct real-time visualization and spectral imaging of the membrane surface in real time. The pressure on the feed-side of the MSM cells is approximately that of the membrane plant element being monitored such that the plant control system can adjust plant operating conditions.

    Method and Apparatus for Real-Time Direct Membrane Monitoring

    公开(公告)号:US20210213391A1

    公开(公告)日:2021-07-15

    申请号:US17217818

    申请日:2021-03-30

    摘要: A membrane surface monitoring system (MSM) and membrane surface monitoring cell for direct and unambiguous detection of membrane surface fouling and mineral scaling. The system includes a membrane surface monitoring system cell, a control valve, a retentate flow meter/transmitter and a controller. The MSM cell has a visually-observable membrane, an edge-lit light guide, an edge illumination light source, a retentate module, and a permeate module. A pressurized inlet stream is fed into the MSM cell. The feed contacts a membrane sheet, leading to membrane-based separation operation to produce retentate and permeate streams. The MSM cell integrates surface illumination and imaging components to allow direct real-time visualization and spectral imaging of the membrane surface in real time. The pressure on the feed-side of the MSM cells is approximately that of the membrane plant element being monitored such that the plant control system can adjust plant operating conditions.