Probe position control system and method
    1.
    发明申请
    Probe position control system and method 有权
    探头位置控制系统及方法

    公开(公告)号:US20070272005A1

    公开(公告)日:2007-11-29

    申请号:US11802624

    申请日:2007-05-24

    IPC分类号: G12B21/20 G01N13/10

    CPC分类号: G01Q30/06 G01Q70/04

    摘要: The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).

    摘要翻译: 本发明提供了一种用于消除热漂移和其它方差的影响的技术,并且通过使用该技术来校正探针的相对位置的上述变化来提高扫描探针显微镜或原子操纵器的观察或操纵精度,以及 在观察或操纵期间由于热或其他因素导致的样品。 为了获得原子级别的样品表面的图像或对样品表面上的原子进行一定的操作,本发明可以应用于用于在测量时控制探针和样品的相对位置的探针位置控制方法 样品表面上的目标原子与探针尖端之间的相互作用。 在本方法中,探针和样品的相对位置在f 1和f 2的频率下相对于样品在平行于样品表面的两个方向上振荡的同时发生变化, 2(S 1a)。 同时,检测频率f 1和f 2 2的点(或特征点)从垂直于样品表面的方向上工作的相互作用的测量值消失 (S 1b)。 然后,控制探头和样品的相对移动,使得由此检测到的测量值被维持(即跟踪特征点; S1c),并且确定上述相对移动的速度(S1d) 。 随后,使用检测速度来校正相对位置控制(S 2)。

    Probe position control system and method
    2.
    发明授权
    Probe position control system and method 有权
    探头位置控制系统及方法

    公开(公告)号:US07703314B2

    公开(公告)日:2010-04-27

    申请号:US11802624

    申请日:2007-05-24

    IPC分类号: G01B5/28

    CPC分类号: G01Q30/06 G01Q70/04

    摘要: The present invention provides a technique for eliminating the effect of the thermal drift and other variances and to improve the observing or manipulating accuracy of a scanning probe microscope or atom manipulator by using the technique to correct the aforementioned change in the relative position of the probe and the sample due to heat or other factors during the observation or manipulation. To obtain an image of the sample surface at the atomic level or perform a certain manipulation on an atom on the sample surface, the present invention can be applied to a probe position control method for controlling the relative position of the probe and the sample while measuring an interaction between the objective atom on the sample surface and the tip of the probe. In the present method, the relative position of the probe and the sample are changed while the probe is oscillated relative to the sample in two directions parallel to the sample surface at frequencies of f1 and f2 (S1a). Meanwhile, a point (or characteristic point) where the frequencies f1 and f2 disappear from the measured value of the interaction working in the direction perpendicular to the sample surface is detected (S1b). Then, the relative movement of the probe and the sample is controlled so that the measurement value thereby detected is maintained (i.e. the characteristic point is tracked; S1c), and the speed of the aforementioned relative movement is determined (S1d). Subsequently, the relative position control is corrected using the detected speed (S2).

    摘要翻译: 本发明提供了一种用于消除热漂移和其它方差的影响的技术,并且通过使用该技术来校正探针的相对位置的上述变化来提高扫描探针显微镜或原子操纵器的观察或操纵精度,以及 在观察或操纵期间由于热或其他因素导致的样品。 为了获得原子级别的样品表面的图像或对样品表面上的原子进行一定的操作,本发明可以应用于用于在测量时控制探针和样品的相对位置的探针位置控制方法 样品表面上的目标原子与探针尖端之间的相互作用。 在本方法中,探针和样品的相对位置在f1和f2频率(S1a)处探针相对于样品在平行于样品表面的两个方向上振荡时改变。 同时,检测频率f1和f2从与样品表面垂直的方向上工作的相互作用的测量值消失的点(或特征点)(S1b)。 然后,控制探头和样本的相对运动,使得维持测量值(即跟踪特征点; S1c),并确定上述相对运动的速度(S1d)。 随后,使用检测的速度来校正相对位置控制(S2)。

    ATOMIC FORCE MICROSCOPE AND INTERACTION FORCE MEASUREMENT METHOD USING ATOMIC FORCE MICROSCOPE
    3.
    发明申请
    ATOMIC FORCE MICROSCOPE AND INTERACTION FORCE MEASUREMENT METHOD USING ATOMIC FORCE MICROSCOPE 有权
    使用原子力显微镜的原子力显微镜和相互作用力测量方法

    公开(公告)号:US20100071099A1

    公开(公告)日:2010-03-18

    申请号:US12523661

    申请日:2008-01-07

    IPC分类号: G01Q60/24

    摘要: A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.

    摘要翻译: 通过FM-AFM获得的频移和Dgr f可以通过从远程相互作用力得到的&Dgr; fLR和从短程相互作用力得到的&Dgr; fSR的简单线性耦合来表示。 考虑到这个因素,样品表面上的原子缺陷和目标原子上的&Dgr; f曲线每个都只测量相对较短的范围尺度(S1和S2),并且差分Dgr f曲线 得到这两条曲线(S3)。 由于差值Dgr f曲线仅来自短距离相互作用力,因此将已知的转换操作应用于该曲线,获得F曲线,该F曲线说明了力与距离Z之间的关系,然后是短距离相互作用 从F曲线获得目标原子上的力(S4)。 由于可以缩小&Dgr。f曲线的测量范围,所以可以缩短测量时间,由于从&Dgr。f曲线到F曲线的转换只需要一次,所以计算时间也可以缩短。 因此,在获得样品表面上的原子和探针之间作用的短程相互作用力时,缩短了&Dgr。f曲线测量所需的时间和计算时间,从而提高了精度和提高了生产率。

    Atomic force microscope and interaction force measurement method using atomic force microscope
    4.
    发明授权
    Atomic force microscope and interaction force measurement method using atomic force microscope 有权
    原子力显微镜和相互作用力测量方法使用原子力显微镜

    公开(公告)号:US07975316B2

    公开(公告)日:2011-07-05

    申请号:US12523661

    申请日:2008-01-07

    IPC分类号: G01B5/28

    摘要: A frequency shift Δf obtained by an FM-AFM can be expressed by a simple linear coupling of a ΔfLR derived from a long-range interaction force and a ΔfSR derived from a short-range interaction force. Given this factor, a Δf curve on an atomic defect and a Δf curve on a target atom on the sample surface are each measured for only a relatively short range scale (S1 and S2), and a difference Δf curve of those two curves is obtained (S3). Since the difference Δf curve is derived only from a short-range interaction force, a known conversion operation is applied to this curve obtain an F curve which illustrates the relationship between the force and the distance Z, and then the short-range interaction force on the target atom is obtained from the F curve (S4). Since the range scale in measuring the Δf curve can be narrowed, the measurement time can be shortened, and since the conversion from the Δf curve into F curve is required only once, the computational time can also be shortened. Consequently, in obtaining the short-range interaction force which acts between the atom on the sample surface and the probe, the time required for the Δf curve's measurement and the computational time are shortened, which leads to accuracy improvement and throughput enhancement.

    摘要翻译: 通过FM-AFM获得的频移和Dgr f可以通过从远程相互作用力得到的&Dgr; fLR和从短程相互作用力得到的&Dgr; fSR的简单线性耦合来表示。 考虑到这个因素,样品表面上的原子缺陷和目标原子上的&Dgr; f曲线每个都只测量相对较短的范围尺度(S1和S2),并且差分Dgr f曲线 得到这两条曲线(S3)。 由于差值Dgr f曲线仅来自短距离相互作用力,因此将已知的转换操作应用于该曲线,获得F曲线,该F曲线说明了力与距离Z之间的关系,然后是短距离相互作用 从F曲线获得目标原子上的力(S4)。 由于可以缩小&Dgr。f曲线的测量范围,所以可以缩短测量时间,由于从&Dgr。f曲线到F曲线的转换只需要一次,所以计算时间也可以缩短。 因此,在获得样品表面上的原子和探针之间作用的短程相互作用力时,缩短了&Dgr。f曲线测量所需的时间和计算时间,从而提高了精度和提高了生产率。