Abstract:
The present invention relates to a friction device (11) for maintaining a control member (2, 8) in a determined position. The device comprises a contact part (16) movable between a declutched stable position and a clutched stable position, and vice versa. The clutched stable position corresponds to a position in which the contact part (16) bears against the control member (2, 8) in such a manner as to establish a determined friction force. An electromechanical drive means moves the contact part (16) between the two stable positions. The device includes remote control means for activating and deactivating the drive means.
Abstract:
The present invention relates to a servo-control (1) provided with at least one body (2) defining an inside space (10) together with a slider element (11) having a control piston (12) suitable for sliding in said inside space (10), said control piston (12) subdividing said inside space (10) into a retraction chamber (4) and an extension chamber (3). The servo-control (1) has at least one limit force detector device (20) comprising a casing (21) secured to said body (2) and defining a detection space (22). Furthermore, a movable member (50) subdivides said detection space (22) into a first detection chamber (26) opening out to said inside space (10) and a second detection chamber (27). Finally, the device includes detector means (29) for detecting the position of said movable member (50) in said detection space (22).
Abstract:
The present invention relates to a friction device (11) for maintaining a control member (2, 8) in a determined position. The device comprises a contact part (16) movable between a declutched stable position and a clutched stable position, and vice versa. The clutched stable position corresponds to a position in which the contact part (16) bears against the control member (2, 8) in such a manner as to establish a determined friction force. An electromechanical drive means moves the contact part (16) between the two stable positions. The device includes remote control means for activating and deactivating the drive means.
Abstract:
The present invention relates to a servo-control (1) provided with at least one body (2) defining an inside space (10) together with a slider element (11) having a control piston (12) suitable for sliding in said inside space (10), said control piston (12) subdividing said inside space (10) into a retraction chamber (4) and an extension chamber (3). The servo-control (1) has at least one limit force detector device (20) comprising a casing (21) secured to said body (2) and defining a detection space (22). Furthermore, a movable member (50) subdivides said detection space (22) into a first detection chamber (26) opening out to said inside space (10) and a second detection chamber (27). Finally, the device includes detector means (29) for detecting the position of said movable member (50) in said detection space (22).
Abstract:
The present invention relates to a device for control of an aerodynamic steering surface (D) of a helicopter (He), which includes an anti-torque system intended to counteract the torque induced by a main forward-movement and lifting rotor (R1) and comprising an anti-torque rotor (R2) exerting an anti-torque lateral thrust and said aerodynamic steering surface (D), controllable and generating an anti-torque transverse lift.According to the invention, said device includes controls means (1A) for controlling said aerodynamic surface (D) in terms of speed, as a function of the difference between a helicopter (He) yaw control demand and a datum demand for the auxiliary rotor (R2), as long as said difference is not zero.