Abstract:
A system and corresponding method for generating electric power from a rotating tire's mechanical energy concerns a piezoelectric power generation device associated with a power harvesting and conditioning module. The piezoelectric structure is preferably mounted within a tire structure such that electric charge is generated therein as the wheel assembly moves along a ground surface. The electrodes of the piezoelectric structure are coupled to a power harvesting and conditioning module that rectifies the resultant electric current from the piezoelectric structure, conditions and stores it in a multi-stage energy storage device, preferably a plurality of capacitors. A regulated voltage source is provided from the energy stored in the power generation device and can be used to selectively power various electronics systems integrated within a tire or wheel assembly. An example of an integrated tire electronics system for use with the disclosed power generation device corresponds to a tire monitoring system that wirelessly transmits such information as tire pressure, temperature and identification variables to a remote receiver location.
Abstract:
A self-powered tire revolution counter includes a motion sensitive power generation mechanism, a power conditioner, a pulse detector, a microcontroller, and, optionally, a radio frequency (RF) transmitting device. In one exemplary embodiment, the power generation mechanism corresponds to a piezoelectric patch that, during movement, provides both operating electrical power and pulsed signals indicative of tire rotation. The power conditioner receives a generator signal from the power generation mechanism and produces a conditioned output voltage that can be used to power associated electronic devices, including the microcontroller. The pulse detector receives the generator signal and produces a detection signal whenever the generator signal meets a predetermined condition. The microcontroller is programmed to determine current and lifetime-accumulated values of selected pulse indications in the detection signal that meet predetermined criteria. Data corresponding to tire environment related parameters such as temperature, pressure, tire deflection, and/or vehicle speed may be stored in the microcontroller at times during tire rotation as power is supplied from the power generation mechanism through the power conditioner. Additional data may be supplied to the microcontroller directly from an external source and read from the microcontroller either by direct electrical contact or via selective RF transmission.
Abstract:
Methodology and apparatus are disclosed for transmitting data to a tire electronics device contained in a tire. The tire electronics device includes a vibration sensor and microcontroller configured so that vibrations sensed by the vibration sensor may be analyzed to determine if the vibrations occurred according to a predetermined sequence. Detection of the predetermined sequence of vibrations may be used to trigger data transmission from the tire electronics device or may be used as an indication to the tire electronics device that it should store additional data or modify its operation in a predetermined fashion. Data may be transmitted to the tire electronics using a variety of mechanical and electromechanical devices including permanently or temporarily installed traffic lane devices or portable mechanical or electromechanical devices.
Abstract:
A system and corresponding method for generating electric power from a rotating tire's mechanical energy concerns a piezoelectric power generation device associated with a power harvesting and conditioning module. The piezoelectric structure is preferably mounted within a tire structure such that electric charge is generated therein as the wheel assembly moves along a ground surface. The electrodes of the piezoelectric structure are coupled to a power harvesting and conditioning module that rectifies the resultant electric current from the piezoelectric structure, conditions and stores it in an energy storage device, preferably a capacitor. A regulated voltage source is provided from the energy stored in the power generation device and can be used to power various electronics systems integrated within a tire or wheel assembly. An example of an integrated tire electronics system for use with the disclosed power generation device corresponds to a tire monitoring system that wirelessly transmits such information as tire pressure, temperature and identification variables to a remote receiver location.