Abstract:
In a filling-tube construction (1, 2) for providing a connection between a mould (6) to be filled with molten metal and a mould-filling furnace (3) containing molten metal (5), said mould (6) having at least one casting cavity (7), the lowermost part of each such cavity communicating with a filling duct (8), at least one end of which is open to the outside of said mould (6) and adapted to be temporarily connected to the filling-tube construction (1, 2) to receive molten metal (5) from the mould-filling furnace (3), the mould-filling furnace being adapted to contain molten metal (5) and to transfer said molten metal (5) under a controlled pressure through the filling-tube construction (1, 2) and to the filling duct (8), the filling-tube construction comprises a first section (1) extending from a position close to the bottom of said mould-filling furnace (3) up to an intermediate position closer to the filling duct (8) and at least one separate second section (2) providing a connection from the upper end of the first section (1) to the open end of the filling duct (8) and adapted to provide a fluid-tight connection to the upper end of the first section (1) and the open end of the filling duct (8). In this way an easy adjustment and/or exchange of parts of the filling-tube constructions can be provided by simply adjusting and/or exchanging the second section (2), without disassembly of the connection between the first section (1) and the mould-filling furnace (3). The invention also includes a method of modifying a conventional constructed filling tube to a filling tube as described above.
Abstract:
When pouring casting cavities in casting moulds having after-feeding reservoirs, tubular lances are introduced, firstly with their point at a short distance from the after-feeding reservoir, after which the lances are pressurized from a pressure chamber and by means of a member with an inclined surface pressed downwardly through the last short distance to the after-feeding reservoir so as to pressurize the latter. With this arrangement it is possible to pressurize the after-feeding reservoirs without the need of equipping the casting moulds with complicated extra equipment and without risk of the molten metal being pressurized unnecessarily.
Abstract:
Molten metal (6) in a furnace (5) and containing particles of solid material (not shown) in suspension is cast in moulds (1) conveyed continuously past the mould-filling station shown by a conveyor (4). To maintain the particles in suspension and keep the metal (6) homogeneous throughout the furnace (5), a paddle-wheel rotor (10) driven by a motor (13) keeps the molten metal in constant movement. A curved guide vane (14) is shaped, placed and oriented so as to divert some of the centrifugal flow from the rotor (10) towards the delivery tube (8) for the moulds (1), thus ensuring that the tube (8) is supplied with freshly-agitated metal.