Abstract:
A thrust bearing configuration for rotary applications includes a shaft (12) having an external surface (14) and a housing (16) having an internal surface (18). The housing and the shaft are adapted for relative rotational movement. Inner bearing support members (22) extend radially outwardly from the external surface of the shaft in axially spaced relation. Outer bearing support members (26) extend radially inwardly from the internal surface of the housing. A bearing pad (24, 28) is disposed between each one of the inner bearing support members and an adjacent one of the outer bearing support members. With the described configuration an axial force exerted upon the shaft is transmitted from the shaft through each of the inner bearing support members and bearing pads to the outer bearing support members and the housing. This thrust bearing acts like a bearing stack. It is possible to stack any number of these bearing pads to withstand anticipated axial loads.
Abstract:
A method of adapting a downhole multi-phase twin screw pump (10) for use in wells having a high gas content. A first step involves positioning a supplementary liquid channel (22,122) in a housing (12) of the pump in fluid communication with a pumping screw near an intake end (14) of the pump. A second step involves feeding supplementary liquid through the supplementary liquid channel to the pumping screw, thereby enhancing a liquid seal around the pumping screw.
Abstract:
A method of running a down hole rotary pump using a top drive, sucker rod or any drive shaft from surface. A first step involves providing a gear box having an input end and an output end. The gear box is being capable of receiving an input of a first speed at the input end and producing an output of a second speed which is one of either faster or slower than of the first speed at the output end. A second step involves positioning the gear box down hole with the input end coupled to a remote lower end of a sucker rod and the output end coupled to a rotary activated pump. A third step involves applying a driving force to the sucker rod to rotate the sucker rod at the first speed, with the rotational force being transmitted to the rotary activated pump through the gear box which rotates the rotary activated pump at the second speed.
Abstract:
A method of adapting a downhole multi-phase twin screw pump (10) for use in wells having a high gas content. A first step involves positioning a supplementary liquid channel (22, 122) in a housing (12) of the pump in fluid communication with a pumping screw near an intake end (14) of the pump. A second step involves feeding supplementary liquid through the supplementary liquid channel to the pumping screw, thereby enhancing a liquid seal around the pumping screw.
Abstract:
A method of running a down hole rotary pump using a top drive, sucker rod or any drive shaft from surface. A first step involves providing a gear box having an input end and an output end. The gear box is being capable of receiving an input of a first speed at the input end and producing an output of a second speed which is one of either faster or slower than of the first speed at the output end. A second step involves positioning the gear box down hole with the input end coupled to a remote lower end of a sucker rod and the output end coupled to a rotary activated pump. A third step involves applying a driving force to the sucker rod to rotate the sucker rod at the first speed, with the rotational force being transmitted to the rotary activated pump through the gear box which rotates the rotary activated pump at the second speed.
Abstract:
A thrust bearing configuration for rotary applications includes a shaft (12) having an external surface (14) and a housing (16) having an internal surface (18). The housing and the shaft are adapted for relative rotational movement. Inner bearing support members (22) extend radially outwardly from the external surface of the shaft in axially spaced relation. Outer bearing support members (26) extend radially inwardly from the internal surface of the housing. A bearing pad (24, 28) is disposed between each one of the inner bearing support members and an adjacent one of the outer bearing support members. With the described configuration an axial force exerted upon the shaft is transmitted from the shaft through each of the inner bearing support members and bearing pads to the outer bearing support members and the housing. This thrust bearing acts like a bearing stack. It is possible to stack any number of these bearing pads to withstand anticipated axial loads.
Abstract:
A turboramjet has a housing with an intake and an exhaust. The housing houses a heat exchanger, a turbojet section and a ramjet section downstream of the turbojet section. The heat exchanger has an air path and a coolant path. The air path is configured to receive air from the air intake. The heat exchanger has a first section made from a first material and a second section made from a second material, the second material having a lower melting point and a lower density relative to the first material. A bypass air passage selectively bypasses the turbojet section to supply air to the ramjet section, and the coolant path uses fuel as a coolant and is configured to supply the fuel to the turbojet section.
Abstract:
A method of running a down hole rotary pump using a top drive, sucker rod or any drive shaft from surface. A first step involves providing a gear box having an input end and an output end. The gear box is being capable of receiving an input of a first speed at the input end and producing an output of a second speed which is one of either faster or slower than of the first speed at the output end. A second step involves positioning the gear box down hole with the input end coupled to a remote lower end of a sucker rod and the output end coupled to a rotary activated pump. A third step involves applying a driving force to the sucker rod to rotate the sucker rod at the first speed, with the rotational force being transmitted to the rotary activated pump through the gear box which rotates the rotary activated pump at the second speed.
Abstract:
A method of running a down hole rotary pump using a top drive, sucker rod or any drive shaft from surface. A first step involves providing a gear box having an input end and an output end. The gear box is being capable of receiving an input of a first speed at the input end and producing an output of a second speed which is one of either faster or slower than of the first speed at the output end. A second step involves positioning the gear box down hole with the input end coupled to a remote lower end of a sucker rod and the output end coupled to a rotary activated pump. A third step involves applying a driving force to the sucker rod to rotate the sucker rod at the first speed, with the rotational force being transmitted to the rotary activated pump through the gear box which rotates the rotary activated pump at the second speed.
Abstract:
A modular downhole pump includes a gear module for transferring power to the pump from a sucker rod or a downhole motor and a rotor module. The rotor module includes a pair of counter-rotating, interleaved rotors split into an upper pair and a lower pair which pump fluids in opposite directions within the rotor module. The rotor modules may be configured to increase the pressure capacity or the volume capacity of the pump and may be connected in series to achieve the desired volume and pressure output.