摘要:
Described is a recall system that uses spiking neuron networks to identify an unknown external stimulus. The system operates by receiving a first input signal (having spatial-temporal data) that originates from a known external stimulus. The spatial-temporal data is converted into a first spike train. A first set of polychronous groups (PCGs) are generated as a result of the first spike train. Thereafter, a second input signal originating from an unknown external stimulus is received. The spatial-temporal data of the second input signal is converted into a second spike train. A second set of PCGs are then generated as a result of the second spike train. Finally, the second set of PCGs is recognized as being sufficiently similar to the first set of PCGs to identify the unknown external stimulus as the known external stimulus.
摘要:
Disclosed is a system and method for predicting political instability. This instability is predicted for specific countries or geographic regions. In one embodiment, the prediction is carried out on a basis of a probabilistic model, such as a Bayesian-network. The model is comprised of various notes corresponding to dependent and independent variables. The independent variables, in turn, correspond to factors relating to historical political instability. The dependent variable corresponds to the prediction of instability. By populating the independent variables with current data, future political instability can be predicted.
摘要:
Described is a method and system for embedding unsupervised learning into three critical processing stages of the spatio-temporal visual stream. The system first receives input video comprising input video pixels representing at least one action and at least one object having a location. Microactions are generated from the input image using a set of motion sensitive filters. A relationship between the input video pixels and the microactions is then learned, and a set of spatio-temporal concepts is learned from the microactions. The system then learns to acquire new knowledge from the spatio-temporal concepts using mental imagery processes. Finally, a visual output is presented to a user based on the learned set of spatio-temporal concepts and the new knowledge to aid the user in visually comprehending the at least one action in the input video.
摘要:
The present invention describes a system for recognizing objects from color images by detecting features of interest, classifying them according to previous objects' features that the system has been trained on, and finally drawing a boundary around them to separate each object from others in the image. Furthermore, local feature detection algorithms are applied to color images, outliers are removed, and resulting feature descriptors are clustered to achieve effective object recognition. Additionally, the present invention describes a system for extracting foreground objects and the correct rejection of the background from an image of a scene. Importantly, the present invention allows for changes to the camera viewpoint or lighting between training and test time. The system uses a supervised-learning algorithm and produces blobs of foreground objects that a recognition algorithm can then use for object detection/recognition.
摘要:
Described is a system for representing, storing, and reconstructing an input signal. The system constructs an index of unique polychronous groups (PCGs) from a spiking neuron network. Thereafter, a basis set of spike codes is generated from the unique PCGs. An input signal can then be received, with the input signal being spike encoded using the basis set of spike codes from the unique PCGs. The input signal can then be reconstructed by looking up in a reconstruction table, for each unique PCG in the basis set in temporal order according to firing times, anchor neurons. Using a neuron assignment table, an output location can be looked up for each anchor neuron to place a value based on the firing times of each unique PCG. Finally, the output locations of the anchor neurons can be compiled to reconstruct the input signal.