Numerical modeling of six-degree-freedom ship motion
    1.
    发明授权
    Numerical modeling of six-degree-freedom ship motion 有权
    六自由度船舶运动的数值模拟

    公开(公告)号:US07756689B1

    公开(公告)日:2010-07-13

    申请号:US11713838

    申请日:2007-02-22

    CPC classification number: G06F17/5009 G06F17/5095 G06F2217/16

    Abstract: The present invention's new calculative methodology models the motion of a seagoing vessel in six dimensions, uniquely employing a total velocity potential as the sole parameterization for taking into consideration all linear and nonlinear dynamical effects involved in interaction between the vessel and environmental water. The solid-body rotational motion of the vessel about the vessel's center of mass is determined in three dimensions (roll, pitch, yaw) by calculating the pressure torque and the buoyancy torque. The solid-body translational motion of the vessel's center of mass is determined in three dimensions (heave, surge, sway) by calculating the pressure force and the buoyancy force. The pressure torque and the pressure force are each associated with pressure (e.g., non-hydrostatic pressure) of water on the vessel's surface. The buoyancy torque and the buoyancy force are each associated with the displacement of the vessel with respect to the vessel's equilibrium position in the water.

    Abstract translation: 本发明的新的计算方法模拟了六维航海船舶的运动,唯一地采用总速度势能作为唯一参数化,以考虑船舶与环境水相互作用所涉及的所有线性和非线性动力学效应。 通过计算压力转矩和浮力转矩,容器围绕容器质心的固体旋转运动由三维(滚动,俯仰,偏航)确定。 通过计算压力和浮力,确定船体质心的三维实体平移运动(起伏,喘振,摇摆)。 压力扭矩和压力力均与容器表面上的水的压力(例如非静水压力)相关。 浮力扭矩和浮力各自与容器相对于水中的容器平衡位置的位移相关联。

    Numerical modeling of nonlinear ship-wave interactions
    2.
    发明授权
    Numerical modeling of nonlinear ship-wave interactions 失效
    非线性船波相互作用的数值模拟

    公开(公告)号:US07734449B1

    公开(公告)日:2010-06-08

    申请号:US11518740

    申请日:2006-09-01

    CPC classification number: G06F17/5018 G06F17/5095 G06F2217/16

    Abstract: The hydrodynamics of a seagoing vessel are numerically modeled through the present invention's new calculative methodology, which uniquely combines vessel boundary characteristics and pseudo-spectral environmental characteristics. Solutions are obtained through mutual transformations between the vessel boundary's irregular grid and the environment's regular pseudo-spectral grid. The pressure at the vessel boundary, an important component of the vessel boundary itself, can be determined via either (i) finite element analysis (which has a Cartesian framework) or (ii) the present invention's new vessel normal vector analysis (which has a non-Cartesian framework); the latter approach avoids the singularity problem that generally besets hydrodynamics-related mathematics. Typical inventive practice implements a computer processing unit and succeeds in finding superior solutions in shorter CPU durations.

    Abstract translation: 通过本发明的新的计算方法对海船的流体动力学进行数值模拟,其独特地结合了船舶边界特征和伪光谱环境特征。 解决方案是通过船舶边界不规则网格和环境的常规伪光栅网格之间的相互转换获得的。 容器边界上的压力是容器边界本身的一个重要组成部分,可以通过(i)有限元分析(其具有笛卡尔框架)或(ii)本发明的新血管法向量分析(其具有 非笛卡儿框架); 后一种方法避免了通常困扰流体力学相关数学的奇异性问题。 典型的创造性实践实现了计算机处理单元,并且在更短的CPU持续时间内成功地找到了优异的解决方案。

Patent Agency Ranking