摘要:
The invention relates to a microfabricated capacitive ultrasonic transducer (20) comprising at least one thin plate (21), provided with a metallization (24), suspended over a conductive substrate (23) through supporting elements integrally coupled to the conductive substrate (23), the conductive substrate (23) forming one or more electrodes corresponding to said at least one thin plate (21), characterized in that said supporting elements comprise an ordered arrangement of columns or “pillars” (22) to which the thin plate (21) is integrally coupled, whereby the pillars (22) operate as substantially punctiform constraints. The invention further relates to a surface micro-mechanical process for fabricating such microfabricated capacitive ultrasonic transducers (20).
摘要:
Localization of remote devices by: the emission of pulses from acoustic transmitters, whose wavefronts propagate in the space region occupied by the remote devices and finally reach them; the emission of radiofrequency pulses from each remote device at the time of detection of the wavefront by an on-board microphone; the acquisition, by a radio base, of the radiofrequency signals propagating from the remote devices, to evaluate the arrival time delays proportional to the distance between the i-th acoustic source and the j-th remote device; the formation of a reception vector for each emission by the i-th source, this vector having a maximum length M equal to the number of remote devices and consisting of the sequence of distances obtained as the product of the reception times and the estimated sound velocity. These steps are repeated for all acoustic sources, to form N+1 reception vectors, to calculate the position of the device by solving derived matrix equations.
摘要:
The invention relates to a microfabricated capacitive ultrasonic transducer (20) comprising at least one thin plate (21), provided with a metallization (24), suspended over a conductive substrate (23) through supporting elements integrally coupled to the conductive substrate (23), the conductive substrate (23) forming one or more electrodes corresponding to said at least one thin plate (21), characterised in that said supporting elements comprise an ordered arrangement of columns or “pillars” (22) to which the thin plate (21) is integrally coupled, whereby the pillars (22) operate as substantially punctiform constraints. The invention further relates to a surface micro-mechanical process for fabricating such microfabricated capacitive ultrasonic transducers (20).
摘要:
Localization of remote devices by: the emission of pulses from acoustic transmitters, whose wavefronts propagate in the space region occupied by the remote devices and finally reach them; the emission of radiofrequency pulses from each remote device at the time of detection of the wavefront by an on-board microphone; the acquisition, by a radio base, of the radiofrequency signals propagating from the remote devices, to evaluate the arrival time delays proportional to the distance between the i-th acoustic source and the j-th remote device; the formation of a reception vector for each emission by the i-th source, this vector having a maximum length M equal to the number of remote devices and consisting of the sequence of distances obtained as the product of the reception times and the estimated sound velocity. These steps are repeated for all acoustic sources, to form N+1 reception vectors, to calculate the position of the device by solving derived matrix equations.