摘要:
Disclosed herein are microcantilevers having structural shapes that are less sensitive to turbulence and drift effects yet provide greater deflections due to analyte concentration. The structural shapes include a C-shaped microcantilever, an E-shaped microcantilever, an L-shaped microcantilever, a double microcantilever, a slit microcantilever, a tapered microcantilever, and a triangular microcantilever. The microcantilevers may be piezoresistive microcantilevers. Also disclosed are microsensors, microfludic devices, and biochips that comprise the microcantilevers as well as methods of using the microcantilevers to detect analytes in a fluid sample.
摘要:
A multilayered three-dimensional media having a plurality of magnetic sublayers, each of the magnetic sublayers being separated from one another by a non-magnetic layer. The plurality of magnetic sublayers can be a stack of one or more coupled Co/Pd or Co/Pt layers; a layer of Co—Cr alloys optionally containing TiO2, SiO2, C, Pt, and B; a stack of one or more Co—Cr—Pt/Pt layers; a stack of one or more Co—Cr—Pd/Pd layers; and/or a stack of one or more layers of Fe—Pt, Fe—Pd, Co—Pt, and Co—Pd materials in an L10 phase. The non-magnetic layers are Pd, Pt, Ti, Ta, Cu, Au, Ag, MgO, or/and ITO. In addition, a multilayered three-dimensional recording system is disclosed, which includes a three-dimensional media, the three-dimensional media includes a plurality of magnetic sublayers, wherein each magnetic sublayer is adapted for writing data to; and a recording head having a trailing edge, and wherein the trailing edge has a higher permeability than the recording head.
摘要:
Disclosed herein are microcantilevers having structural shapes that are less sensitive to turbulence and drift effects yet provide greater deflections due to analyte concentration. The structural shapes include a C-shaped microcantilever, an E-shaped microcantilever, an L-shaped microcantilever, a double microcantilever, a slit microcantilever, a tapered microcantilever, and a triangular microcantilever. The microcantilevers may be piezoresistive microcantilevers. Also disclosed are microsensors, microfluidic devices, and biochips that comprise the microcantilevers as well as methods of using the microcantilevers to detect analytes in a fluid sample.
摘要:
Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution.
摘要:
Magnetic Force Microscopy (MFM) probe tips that provide enhanced spatial resolution and methods of manufacture are provided. In one aspect, two or more magnetically-decoupled layers may be deposited on an AFM probe in order to create an active magnetic region at about the apex of the probe tip with dimensions less than about 10 nanometers. In another aspect, nanoscale patterning techniques may be employed to fabricate probe tips that possess plateau features. These plateau features may serve as substrates for the deposition of magnetic films having properties similar to magnetic recording media. Machining techniques, such as Focused Ion Beam (FIB) may be further employed to reduce the size of the magnetic materials deposited upon the substrate. Beneficially, because the plateaus of the substrate are substantially flat and of known geometry, and the magnetic properties of magnetic films deposited on flat surfaces are similar to those deposited upon the plateau, the magnetization of the MFM probe tips may be determined to high accuracy. In this manner, fine control over the magnetic properties of MFM probe tips may be achieved, providing enhanced MFM resolution.