摘要:
The present invention provides a carrier core material for use in the production of an electrophotographic developer which, even when applied, for example, to MFPs (multifunction printers), can realize stable, high-quality and high-speed development, and has a prolonged replacing life of magnetic carriers, and a method of manufacturing the same, a magnetic carrier including the carrier core material, and an electrophotographic developer manufactured from the magnetic carrier. An electrophotographic development carrier is prepared by adding resin particles, a binder, a dispersant, a wetting agent, and water to a raw material powder, wet pulverizing the mixture, drying the pulverized product to give granulated powder, calcinatng the granulated powder, and then sintering the granulated powder to prepare a carrier core material having an internally hollow structure, and coating the carrier core material with a resin. An electrophotographic developer is manufactured by mixing the electrophotographic development carrier with a toner.
摘要:
To provide a carrier for electrophotographic developer, capable of realizing a high image quality and full colorization and reducing carrier scattering, and a manufacturing method of the same, and an electrophotographic developer containing the carrier. A carrier core material for electrophotographic developer, with a general formula expressed by MgxMn(1-x)FeyO4 (where 0
摘要翻译:为了提供能够实现高图像质量和全面着色并减少载流子散射的电子照相显影剂载体及其制造方法,以及含有载体的电子照相显影剂。 用于电摄影显影剂的载体芯材料,具有由Mg x Mn(1-x)FeyO 4(其中0
摘要:
To provide a carrier for an electrophotographic developer in which high image quality and full colorization are possible while carrier scattering is reduced, and a method for producing the carrier, and an electrophotographic developer including the carrier. A carrier core material for an electrophotographic developer is produced so that the half-value width B of a peak having a maximum intensity in an XRD pattern satisfies B≦0.160 (degree). A carrier for an electrophotographic developer and an electrophotographic developer are produced from the carrier core material for an electrophotographic developer.
摘要:
The present invention provides a carrier core material for use in the production of an electrophotographic developer which, even when applied, for example, to MFPs (multifunction printers), can realize stable, high-quality and high-speed development, and has a prolonged replacing life of magnetic carriers, and a method of manufacturing the same, a magnetic carrier including the carrier core material, and an electrophotographic developer manufactured from the magnetic carrier. An electrophotographic development carrier is prepared by adding resin particles, a binder, a dispersant, a wetting agent, and water to a raw material powder, wet pulverizing the mixture, drying the pulverized product to give granulated powder, calcinatng the granulated powder, and then sintering the granulated powder to prepare a carrier core material having an internally hollow structure, and coating the carrier core material with a resin. An electrophotographic developer is manufactured by mixing the electrophotographic development carrier with a toner.
摘要:
To provide a carrier for electrophotographic developer, capable of realizing a high image quality and full colorization and reducing carrier scattering, and a manufacturing method of the same, and an electrophotographic developer containing the carrier. A carrier core material for electrophotographic developer, with a general formula expressed by MgxMn(1-x)FeyO4 (where 0
摘要翻译:为了提供能够实现高图像质量和全面着色并减少载流子散射的电子照相显影剂载体及其制造方法,以及含有载体的电子照相显影剂。 具有由Mg x Mn(1-x)FeyO 4(其中0
摘要:
To provide a carrier for an electrophotographic developer in which high image quality and full colorization are possible while carrier scattering is reduced, and a method for producing the carrier, and an electrophotographic developer including the carrier. A carrier core material for an electrophotographic developer is produced so that the half-value width B of a peak having a maximum intensity in an XRD pattern satisfies B≦0.160 (degree). A carrier for an electrophotographic developer and an electrophotographic developer are produced from the carrier core material for an electrophotographic developer.