摘要:
A platform that facilities preservation of user privacy with respect to location-based applications executing on mobile computing devices is described. The platform registers triggers that are set forth by location-based applications, where a trigger specifies one or more rules and includes a location constraint. The platform causes a sensor on the mobile computing device to output location data, and the platform determines if the trigger has been satisfied by comparing the location constraint with the location data. If the trigger is satisfied, the platform transmits a callback to the application. Accordingly, the application does not receive location data from the sensor.
摘要:
An optical receiver may include a unitary transformation operator to receive an n-symbol optical codeword associated with a codebook, and to perform a unitary transformation on the received optical codeword to generate a transformed optical codeword, where the unitary transformation is based on the codebook. The optical receiver may further include n optical detectors, where a particular one of the n optical detectors is to detect a particular optical symbol of the transformed optical codeword, and to determine whether the particular optical symbol corresponds to a first optical symbol or a second optical symbol. The optical receiver may also include a decoder to construct a codeword based on the determinations, and to decode the constructed codeword into a message using the codebook. The optical receiver may attain superadditive capacity, and, with an optimal code, may attain the Holevo limit to reliable communication data rates.
摘要:
A resource allocation framework is described herein which allocates items (conceptualized as balls) to item-receiving slots (conceptualized as bins) in a domain-agnostic manner. A user instantiates the resource allocation framework to a particular allocation problem by generating a specification that describes the allocation problem in a declarative fashion. Among other features, the specification maps real-world entities to the balls and bins, and describes the constraints associated with the allocation problem. The specification also provides a utilization function that computes the consumption of resources for a proposed assignment of a particular ball to a particular bin. According to another aspect, the resource allocation framework uses many processing elements (e.g., GPU threads, CPU threads, etc.), operating in parallel, to attempt to find a solution to the allocation problem. In this search for a solution, the resource allocation framework operates in any combination of an explore mode and an exploit mode.
摘要:
A resource allocation framework is described herein which allocates items (conceptualized as balls) to item-receiving slots (conceptualized as bins) in a domain-agnostic manner. A user instantiates the resource allocation framework to a particular allocation problem by generating a specification that describes the allocation problem in a declarative fashion. Among other features, the specification maps real-world entities to the balls and bins, and describes the constraints associated with the allocation problem. The specification also provides a utilization function that computes the consumption of resources for a proposed assignment of a particular ball to a particular bin. According to another aspect, the resource allocation framework uses many processing elements (e.g., GPU threads, CPU threads, etc.), operating in parallel, to attempt to find a solution to the allocation problem. In this search for a solution, the resource allocation framework operates in any combination of an explore mode and an exploit mode.
摘要:
An optical imaging system includes a transmitter configured to generate spatially entangled quantum states of light to probe reflective targets, a target configured to reflect the spatially entangled quantum states of light and a receiver configured to receive and detect the spatially entangled quantum states of light, thereby decoding a message encoded in a memory.
摘要:
Users make online purchases using a virtual currency. A series of secret encryption keys is generated, where each key in the series is associated with a different epoch. A token tracking table is initialized. Whenever real currency is received from a user wanting to purchase tokens, a semantically secure encryption method is used in conjunction with the secret encryption key in the series that is associated with the current epoch to generate a set of encrypted tokens which includes one or more encrypted paid tokens. The set of encrypted tokens is sent to the user wanting to purchase tokens, and each encrypted paid token in the set is entered into the token tracking table, where the entry for each encrypted paid token includes information specifying that the token has not yet been spent and has not yet been encashed.
摘要:
Described herein are technologies pertaining to protecting user privacy in connection with attribute-based matching services. A user registers with a platform that includes a plurality of non-collaborating partitions, where registration includes transmitting a message to the platform that indicates that the user has one or more attributes corresponding thereto. Through selective encryption and a communications protocol amongst the partitions, none of the partitions are able to ascertain that the user has the attributes. Acting in conjunction, however, the plurality of partitions perform rich attribute
摘要:
User privacy is preserved in response to user interactions with information items, such as advertisements, by controlling the behavior of a user's computer. Information items are associated with item response specifiers. Item response specifiers control the behaviors of the user's computer in response to user interactions with information items. Item response specifiers may be communicated to the user's computer with the associated information items or be retrieved separately by the user's computer from an information item broker or trusted third party. Item response specifiers may be cryptographically signed to ensure their integrity. Following a user interaction with an information item, the user's computer refers to the item response specifier to determine an appropriate privacy-preserving post-interaction behavior. Examples of privacy-preserving behavior include a silent privacy-preserving behavior, a proxied interaction privacy-preserving behavior, a partial proxied interaction privacy-preserving behavior, a delayed handoff privacy-preserving behavior, and a direct to provider privacy-preserving behavior.
摘要:
An optical receiver may include a unitary transformation operator to receive an n-symbol optical codeword associated with a codebook, and to perform a unitary transformation on the received optical codeword to generate a transformed optical codeword, where the unitary transformation is based on the codebook. The optical receiver may further include n optical detectors, where a particular one of the n optical detectors is to detect a particular optical symbol of the transformed optical codeword, and to determine whether the particular optical symbol corresponds to a first optical symbol or a second optical symbol. The optical receiver may also include a decoder to construct a codeword based on the determinations, and to decode the constructed codeword into a message using the codebook. The optical receiver may attain superadditive capacity, and, with an optimal code, may attain the Holevo limit to reliable communication data rates.
摘要:
A client receives a notification of a user interaction with an information item and creates a record describing this interaction. The client encrypts the record using an encryption key associated with a server. The encrypted record is then communicated to at least one proxy, which in turn forwards the encrypted record to a server. Upon receiving the encrypted record from the proxy, a server decrypts the record using a decryption key and analyzes the decrypted record to identify the information item and the type of user interaction. This information may be used individually or in aggregate for tracking user interests, billing advertisers or information item providers, and/or collecting anonymous information from users.