Abstract:
A data communication system configured to determine and coordinate loading in a mobile network with plurality of client devices. The system includes a control server coupled the client devices. The control server has a probe control function that transmits a downlink (DL) probe with an updated client probing profile to each client device. The client device has a client probing control engine that gathers network measurement information for transmission to the control server and generates uplink (UL) probes containing the network measurement information including, radio access network (RAN) metrics, DL probe measurements for transmission to the control server based on the client probing profile. The control server receives the UL probes from the client devices and determines the system load based on the measurement information, the control server updates client scheduling information based on the system load and transmits the client scheduling information to the plurality of client devices.
Abstract:
A system for time deferred usage of mobile data by a plurality of user devices each coupled to a network server and running one or more applications. The system includes a network measurement module, user profiling module and a price-optimization computational module located at the network server and a user interface module located at each user device. The network measurement module collects traffic data from each of the applications to generate the historical congestion data and current congestion data. The user profiling module is configured to receive user reaction data and determine how much mobile data for each application may be deferred to a later point in time to generate the predicted user reaction data. The price-optimization receives the historical congestion data and the current network congestion data from the network measurement module and the predicted user reaction data from the user profiling module and generate day-ahead time-dependent price data for a plurality of upcoming timeslots of mobile data based on the historical congestion data, current network congestion, predicted user reaction data, network operator costs for data exceeding maximum network capacity and network operator costs for supplying data in less-congested time periods. The user interface receives a time interval based delay selection input for each of the one or more applications, select one or more of the upcoming data timeslots of mobile data for use by the one or more applications and delay mobile data usage by each of the one or more applications based on the delay selection input.
Abstract:
A system for time deferred usage of mobile data by a plurality of user devices each coupled to a network server and running one or more applications. The system includes a network measurement module, user profiling module and a price-optimization computational module located at the network server and a user interface module located at each user device. The network measurement module collects traffic data from each of the applications to generate the historical congestion data and current congestion data. The user profiling module is configured to receive user reaction data and determine how much mobile data for each application may be deferred to a later point in time to generate the predicted user reaction data. The price-optimization receives the historical congestion data and the current network congestion data from the network measurement module and the predicted user reaction data from the user profiling module and generate day-ahead time-dependent price data for a plurality of upcoming timeslots of mobile data based on the historical congestion data, current network congestion, predicted user reaction data, network operator costs for data exceeding maximum network capacity and network operator costs for supplying data in less-congested time periods. The user interface receives a time interval based delay selection input for each of the one or more applications, select one or more of the upcoming data timeslots of mobile data for use by the one or more applications and delay mobile data usage by each of the one or more applications based on the delay selection input.
Abstract:
A system configured to generate a utilization metric using a plurality of client devices coupled to a network server is disclosed. The system includes a channel condition monitor and a probe packet coordinator located on each client device, the channel condition monitor being configured to gather channel information, the probe packet coordinator being configured to format a packet train containing the channel information, the probe packet coordinator being configured to schedule or control the transmission timing of the packet train. The system also includes a network congestion calculator located at the network server, the network congestion calculator being configured to receive the packet train from each client device and generate a utilization metric based on the packet train received from each client device.
Abstract:
A system and method for delivering variable pricing of data usage to a user device operated by a user is disclosed. The system includes a server configured with a usage monitor configured to identify the user and monitor usage patterns of the user device. The server has a pricing policy engine configured to generate pricing information based on at least one of the identity of the user and the usage patterns. The pricing policy engine is configured to transmit the pricing information to the user device. The user device is configured with a usage controller having a user interface configured to receive a delay preference selection identifying at least one delay tolerant application. The usage controller is configured to receive pricing information from the pricing policy engine and to delay data usage to the delay tolerant application based on the delay preference selection and the pricing information.
Abstract:
A system and method for delivering variable pricing of data usage to a user device operated by a user is disclosed. The system includes a server configured with a usage monitor configured to identify the user and monitor usage patterns of the user device. The server has a pricing policy engine configured to generate pricing information based on at least one of the identity of the user and the usage patterns. The pricing policy engine is configured to transmit the pricing information to the user device. The user device is configured with a usage controller having a user interface configured to receive a delay preference selection identifying at least one delay tolerant application. The usage controller is configured to receive pricing information from the pricing policy engine and to delay data usage to the delay tolerant application based on the delay preference selection and the pricing information.
Abstract:
A system configured to generate a utilization metric using a plurality of client devices coupled to a network server is disclosed. The system includes a channel condition monitor and a probe packet coordinator located on each client device, the channel condition monitor being configured to gather channel information, the probe packet coordinator being configured to format a packet train containing the channel information, the probe packet coordinator being configured to schedule or control the transmission timing of the packet train. The system also includes a network congestion calculator located at the network server, the network congestion calculator being configured to receive the packet train from each client device and generate a utilization metric based on the packet train received from each client device.
Abstract:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.
Abstract:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.
Abstract:
In response to a detected loss of previously transmitted information by an apparatus communicating with a remote device (e.g., using TCP), the rate of transmission of information is increased by the apparatus in response to attributing the detected loss of previously transmitted information as not being caused by congestion. This attribution of the packet loss is typically determined based on roundtrip delays between sent information and received corresponding acknowledgments, which may be used directly or indirectly, such as by estimating network queuing delays based on the measured roundtrip delays.