Abstract:
This invention relates to Pade approximation convert circuit of the direct digital frequency synthesizer in which a multiplier receives and multiplies a first input signal and a variable signal so as to produce a multiplication signal; a divider receives and divides a second input signal and a variable signal so as to produce a division signal; an adder receives and adds the multiplication signal and the division signal so as to generate an output signal, that is then returned back to the divider. A quarter period of a sinusoidal wave signal is completed by the proceeding of direct calculation two times such that the time for the calculation of a complete sinusoidal wave can be saved and the area of the calculation circuit can be reduced.
Abstract:
This invention relates to Pade approximation convert circuit of the direct digital frequency synthesizer in which a multiplier receives and multiplies a first input signal and a variable signal so as to produce a multiplication signal; a divider receives and divides a second input signal and a variable signal so as to produce a division signal; an adder receives and adds the multiplication signal and the division signal so as to generate an output signal, that is then returned back to the divider. A quarter period of a sinusoidal wave signal is completed by the proceeding of direct calculation two times such that the time for the calculation of a complete sinusoidal wave can be saved and the area of the calculation circuit can be reduced.
Abstract:
A module and a method for estimating signal direction of arrival are disclosed. The module consists of a processing unit and a direction finder. Using spatial signatures at different carrier frequencies, the processing unit generates a generating set of a subspace. Based on the generating set, the signal subspace is extended. Then, the direction finder estimates signal direction of arrival according to the signal subspace. The module for estimating signal direction of arrival of the present invention effectively reduces wrong estimation of the signal direction of arrival caused by loss of rank.