摘要:
An automated computer-aided diagnosis (CAD) method and system using artificial neural networks (ANNs) for the quantitative analysis of image data. Three separate ANNs were applied for detection of interstitial disease on digitized two-dimensional chest images. The first ANN was trained with horizontal profiles in regions of interest (ROIs) selected from normal and abnormal chest radiographs. The second ANN was trained using vertical output patterns obtained from the 1.sup.st ANN for each ROI. The output value of the 2.sup.nd ANN was used to distinguish between normal and abnormal ROIS with interstitial infiltrates. If the ratio of the number of abnormal ROIs to the total number of all ROIs in a chest image was greater than a certain threshold level, the chest image was considered abnormal. In addition, the third ANN was applied to distinguish between normal and abnormal chest images where the chest image was not clearly normal or abnormal. The ANN trained with image data learns some statistical properties associated with interstitial infiltrates in chest radiographs. In addition, the same technique can be applied to higher-dimensional data (e.g., three-dimensional data and four-dimensional data including time-varying three-dimensional data).