Abstract:
According to one embodiment, if the message makes a round in accordance with the order put to the IPTs in advance, the main unit recognizes that all the IPTs are connected to the LAN. If the end message comes back to the main unit for the start message transmitted from the main unit, all the IPTs are present on the LAN. The IPTs mutually perform the keep-alive processing among terminals in turn. In the process, if timeout occurs, the IPT which has detected the occurrence notifies the absence of the next IPT to the main unit, and change the order of the keep-alive processing.
Abstract:
A fuel cell comprised of a solid electrolyte layer sandwiched by a cathode layer and an anode layer to which a mixed gas of a fuel gas and air mixed together is supplied, wherein the fuel cell is formed into a spiral member comprised of a single cell layer comprised of the cathode layer, solid electrolyte layer, and anode layer stacked together or a multilayer member of a plurality of the single cell layers stacked together rolled up spirally, the cathode layer and anode layer forming facing surfaces of each upper stratum and lower stratum of the single cell layer or multilayer member adjoining each other in a diametrical direction of the spiral member are arranged through an electrical insulator, and the cathode layer and anode layer or the electrical insulator are or is formed with a gas passage enabling passage of the mixed gas, whereby it is possible to prevent an increase in size of the cell even if increasing the contact area of the anode layer and cathode layer with the air or fuel gas.
Abstract:
A fuel cell comprising a container and a fuel cell element or elements contained in the container, to which a mixed fuel gas containing a fuel gas and oxygen is fed to generate electricity, and the gas having passed through the fuel cell element or elements is discharged, as an exhaust gas, from the container, wherein the space other than the fuel cell element or elements in the container, through which the mixed fuel gas or the exhaust gas flows, is filled with packing materials to form a packed layer having a gap between the adjacent packing materials, at which gap the mixed fuel gas cannot be ignited, during the operation of the fuel cell, even if the mixed fuel gas has a fuel gas concentration within the ignition limits for the mixed fuel gas, and a burn-up section, in which the exhaust gas discharged from the packed layer is burned, is provided at, or in the vicinity of, the exhaust gas outlet of the container.
Abstract:
A fuel cell comprising a container having a gas inlet and a gas outlet, and a multi-element stack contained in the container and made up of two or more elements for the fuel cell, the element comprising an electrolyte layer, a cathode layer, and an anode layer, with the electrolyte layer being interposed between the cathode and anode layers, and a mixed gas of a fuel gas and an oxygen-containing gas being fed to the fuel cell from the gas inlet, wherein the multi-element stack is formed of the elements stacked in such a manner that the cathode layer of one element is in direct contact to the anode layer of another element, and each of the electrolyte, cathode, and anode layers has a passage through which the mixed gas passes. A multi-element stack for such a fuel cell is also disclosed.
Abstract:
An apparatus is presented for removing the inner and outer keys from a support grid of a fuel assembly automatically or by mechanical methods. The apparatus removes a line of keys from a loaded assembly inserted into a grid through an opening section of the grid to deflect the springs. Both ends of the keys are engaged with the engaging members, and one set of keys are rotated in one direction while the other set of keys are rotated in the opposite direction. The springs are then released to press on the fuel rods firmly in place between the springs and the dimples in the grid cell. The keys are removed from the grid by clamping or holding the keys and moving the keys together with the clamping/holding device in the key axis direction by operating the driving device until the keys are removed completely from the grid.
Abstract:
There are disclosed an assembling apparatus and an assembling method of a nuclear fuel assembly by which flaws or scratches to be formed on the surfaces of the fuel rods can be reduced. The fuel rods are inserted into the grid cells of the supporting grids under the state where the supporting grids are disposed in proximity to each other. Therefore, it is possible to remarkably reduce the fall-down movement of the tip portion of the fuel rod. Conventionally, the tip portion or lower surface of the fuel rod inevitably comes in contact with the grid cell of the supporting grid, so that the scratches might be formed on the surface of the fuel rod, which deteriorates the quality of the fuel assembly. However, according to the present method and apparatus, it is possible to avoid the interference between them so that the scratches to be formed on the surface of the fuel rods can be reduced remarkably.
Abstract:
The purpose of the present invention is to provide an apparatus which can insert a plurality of hooks into slits of a strap constructing a grid and to hold springs so that the spaces of grid cells are enlarged simultaneously. The enlargement enables insertion of fuel rods into the cells. The apparatus comprises a frame member adapted to attach to the strap along the longitudinal direction thereof, a pair of clamping members engaged the frame member and extending in the longitudinal direction of the strap. Each clamping member can move along the longitudinal direction of the strap. The clamping member has a plurality of projecting hooks arranged in the longitudinal direction of the strap in a spaced relation to one another. The end of the hooks of one of the clamping means are bent toward a longitudinal direction of the strap, while the hooks of another clamping means are bent toward another longitudinal direction of the strap.
Abstract:
A fuel cell comprising a container having at least one feed port and at least one exhaust port, and a stack of fuel cell elements contained in the container in such a manner that the circumferential faces of the stack of fuel cell elements and the inner surfaces of the container are contacted, the element comprising a cathode layer, an anode layer, and an electrolyte layer, with the electrolyte layer being interposed between the cathode and anode layers, and a mixed gas containing a fuel gas and oxygen being fed to the fuel cell from the feed port, and an exhaust gas is discharged from the exhaust port, wherein packing materials are filled in each of the spaces between the feed port and the stack of fuel cell elements and between the stack of fuel cell elements and the exhaust port, and wherein there is a gap between the adjacent packing materials, at which gap the mixed fuel gas cannot be ignited at the operating condition of the fuel cell even if the mixed fuel gas has an oxygen concentration within the ignition limits for the mixed fuel gas.
Abstract:
A key member, a method for insertion and/or removal of the fuel rods in a nuclear fuel assembly using the key member and a method of disassembling the nuclear fuel assembly using the same key member are disclosed. The key member has first projections and second projections formed on the opposite faces of an elongated key body. In the insertion or removal of the fuel rods or in the disassembling the nuclear fuel assembly, the key member is inserted into the grid and rotated to bring the first projections and the second projections into engagement with the straps of the grids and the springs on the straps to thereby the springs are deflected in a direction away from the dimples opposing to the springs. In this situation, the insertion and removal of the fuel rods can be carried out. Further, in disassembling the nuclear fuel assembly, space required for inserting the key member into the grids may be ensured by subjecting prescribed portions of control rod-guide pipes and instrumentation pipes to cutting work and bulging the cut ends to move the cut end away from that of the opposing cut ends of the cut piece. The space may be formed by removing the control rod-guide pipes and instrumentation pipes after having formed slits in the pipes.
Abstract:
A key member, a method for insertion and/or removal of the fuel rods in a nuclear fuel assembly using the key member and a method of disassembling the nuclear fuel assembly using the same key member are disclosed. The key member has first projections and second projections formed on the opposite faces of an elongated key body. In the insertion or removal of the fuel rods or in the disassembling the nuclear fuel assembly, the key member is inserted into the grid and rotated to bring the first projections and the second projections into engagement with the straps of the grids and the springs on the straps to thereby deflect the springs in a direction away from the dimples opposing the springs. In this situation, the insertion and removal of the fuel rods can be carried out. Further, in disassembling the nuclear fuel assembly, space required for inserting the key member into the grids may be ensured by subjecting prescribed portions of control rod-guide pipes and instrumentation pipes to cutting work and bulging the cut ends to move the cut end away from that of the opposing cut ends of the cut piece. The space may be formed by removing the control rod-guide pipes and instrumentation pipes after having formed slits in the pipes.