摘要:
Kernel functions, the number of which is set in advance, are linearly coupled to generate the most suitable Kernel function for a data classification. An element Kernel generating unit 102 generates a plurality of element Kernel functions K1-Kp by using a plurality of distance functions (distance scales) d1-dp prepared in advance.A Kernel optimizing unit 103 generates an integrated Kernel function K with which the element Kernel functions K1-Kp are linearly coupled, determines coupling coefficients to optimally separate the teacher data z, and optimizes the integrated Kernel function K.A Kernel component display unit 104 displays each of the element Kernel functions K1-Kp, its coupling coefficient, and a distance scale corresponding to each of the element kernel functions on a display device 150.
摘要:
Kernel functions, the number of which is set in advance, are linearly coupled to generate the most suitable Kernel function for a data classification. An element Kernel generating unit 102 generates a plurality of element Kernel functions K1-Kp by using a plurality of distance functions (distance scales) d1-dp prepared in advance.A Kernel optimizing unit 103 generates an integrated Kernel function K with which the element Kernel functions K1-Kp are linearly coupled, determines coupling coefficients to optimally separate the teacher data z, and optimizes the integrated Kernel function K.A Kernel component display unit 104 displays each of the element Kernel functions K1-Kp, its coupling coefficient, and a distance scale corresponding to each of the element kernel functions on a display device 150.
摘要:
To detect a statistical change-point that appears in time-series data with a high accuracy. A first model learning section 102 learns the occurrence probability distribution of time-series data 111 as a first statistical model (for example, a latent Markov model) defined by a finite number of variables including a latent variable. In the subsequent processing, the degree of a temporal change in the probability distribution is computed for each of the probability distribution of the entire first statistical model, its partial probability distribution (the probability distribution of the latent variable and conditional probability distribution contingent on the value of the latent variable), and the probability distribution in which the above plural probability distributions are linearly-combined with a weight. The change-point of the time-series data 111 is detected on the basis of the computed degree of the change.
摘要:
To detect a statistical change-point that appears in time-series data with a high accuracy. A first model learning section 102 learns the occurrence probability distribution of time-series data 111 as a first statistical model (for example, a latent Markov model) defined by a finite number of variables including a latent variable. In the subsequent processing, the degree of a temporal change in the probability distribution is computed for each of the probability distribution of the entire first statistical model, its partial probability distribution (the probability distribution of the latent variable and conditional probability distribution contingent on the value of the latent variable), and the probability distribution in which the above plural probability distributions are linearly-combined with a weight. The change-point of the time-series data 111 is detected on the basis of the computed degree of the change.
摘要:
A network fault detection apparatus includes: data distribution learning units (2, 3, 4, and 5) that take, as input, data in which the state of the network is expressed by matrix variables of a hierarchical structure and that learn the state of the network as the probability distribution of the matrix variables, and fault detection units (6 and 7) that, based on the result of learning by the data distribution learning unit, detect, as a network fault, a state in which the probability distribution transitions from a distribution that indicates the normal state of the network to a distribution that indicates another state.