摘要:
A lensless optical servo system (100) has an unfocused light source (102) and patterned photodetectors (104, 106, 108). The unfocused light is reflected by the markings on an LS-120 disk (40) and the reflected light carries the pattern of the markings the considerable distance in its far-field to the photodetectors (104, 106, 108). The convolution of this light pattern and a mating geometric pattern (110, 112, 114) on the photodetectors (104, 106, 108) causes the photodetectors to generate signals representing the position of the track on the disk. According to a presently preferred embodiment, a laser diode (102) and three detectors (104, 106, 108) are formed on the same silicon substrate (101). Sinusoidal metalization (110, 112, 114) is applied to the detectors (104, 106, 108) in the radial direction. The period of the sinusoidal metalization is two times the tracking pitch of the disk radially and tangentially. The metalization on the first detector is approximately ninety degrees behind the metalization on the second detector and the metalization on the third detector is approximately ninety degrees ahead of the metalization on the second detector. Preferably, each detector (104, 106, 108) is provided with two sinusoidal patterns (110a, 110b, 112a, 112b, 114a, 114b), approximately one hundred eighty degrees out of phase with each other, and spaced apart in the tangential direction.
摘要:
An optical position detector system has a light emitting diode source, two detectors, and a diffraction grating which is frequency mismatched with the frequency of a reference grating. According to one embodiment for use in a reflective system, the source and two detectors are mounted on a single body and a single diffraction grating is placed over the source and detectors. There is no need to control the locations or phase differences between the source grating and the detector gratings because a single grating us used for all three. The spatial frequency of the single grating is chosen such that it is different from the frequency of the reference grating but still produces a signal having a maximized amplitude with the desired phase shift. Two alignments which formerly required tight tolerance are no longer necessary with the system of the invention. In addition, a fabrication feature of introducing a discrete phase step between the gratings covering both detectors is not necessary. In a second embodiment, for a transmissive system, a source with a source grating is mounted on one body and the two detectors are mounted on another body with the reference grating located therebetween. A single grating is applied over the two detectors and only the detector grating is mismatched with the reference grating.