摘要:
A liquid crystal projector has a pre-sheet polarizer and an incoming light side sheet polarizer on the incoming light side of a liquid crystal panel. Two sheet polarizers superimposed to each other are stuck on the outgoing light side face of the liquid crystal panel. The degree of polarization of the pre-sheet polarizer is smaller than that of the incoming light side sheet polarizer, so that both the sheet polarizers suitably share the quantity of absorbed light. Similarly, the degree of polarization of the incoming light side one of the sheet polarizers stuck on the outgoing light side face of the liquid crystal panel is smaller than that of the other one, so that both the sheet polarizers suitably share the quantity of absorbed light. With this configuration, the durability of the sheet polarizer is improved and the light output is increased.
摘要:
To provide a liquid crystal display device and manufacturing method thereof for preventing a drop in the pixel slot opening and focus rates due to poor alignment precision of the drive substrate and microlens which face each other, and for improving the focus rate and production efficiency. A lens group comprised of a plurality of microlenses is integrated into the opposing substrate. A second alignment mark is formed at the desired position within the display area on the opposing substrate. This second alignment mark is formed along grooves between numerous protrusions having a semi-circular shaped cross section so the outer contours of the face form a cross shape of a specific width. These protrusions are made of the same material (for instance transparent plastic) and shape (semi-circular cross section) as those of the microlens at the display area, forming a lens shape. The second alignment mark is made together and simultaneously with the forming of the microlens in such a way that there is no deviation between the second alignment mark and the microlens opposite it.
摘要:
A display panel, ensuring high photo-detection accuracy in a region near a frame area, is provided. The display panel includes: image display elements disposed in an effective display area of a display screen; a light-shielding layer disposed in a frame area around the effective display area; and photo-detection elements disposed in the effective display area or in both of the effective display area and the frame area. The photo-detection elements detect the invisible light. The light-shielding layer transmits invisible light, while shields visible light.
摘要:
There is provided a color display device comprising a first substrate provided on the light source side to accept an incident light, a second substrate joined with the first substrate via a space to emit an outgoing light, an electro-optical substance held in the space, a plurality of picture elements arranged in a matrix on the second substrate to modulate an incident light and emit an outgoing light, a plurality of microlenses, arranged on the incident light side of the picture elements, for condensing incident light to individual picture elements and a color filter, arranged on the incident light side of the microlenses, for coloring individual picture elements.
摘要:
A display panel, ensuring high photo-detection accuracy in a region near a frame area, is provided. The display panel includes: image display elements disposed in an effective display area of a display screen; a light-shielding layer disposed in a frame area around the effective display area; and photo-detection elements disposed in the effective display area or in both of the effective display area and the frame area. The photo-detection elements detect the invisible light. The light-shielding layer transmits invisible light, while shields visible light.
摘要:
To provide a liquid crystal display device and manufacturing method thereof for preventing a drop in the pixel slot opening and focus rates due to poor alignment precision of the drive substrate and microlens which face each other, and for improving the focus rate and production efficiency. A lens group comprised of a plurality of microlenses is integrated into the opposing substrate. A second alignment mark is formed at the desired position within the display area on the opposing substrate. This second alignment mark is formed along grooves between numerous protrusions having a semi-circular shaped cross section so the outer contours of the face form a cross shape of a specific width. These protrusions are made of the same material (for instance transparent plastic) and shape (semi-circular cross section) as those of the microlens at the display area, forming a lens shape. The second alignment mark is made together and simultaneously with the forming of the microlens in such a way that there is no deviation between the second alignment mark and the microlens opposite it.