摘要:
Feature vector construction techniques are described. In one or more implementations, an input is received at a computing device that describes a graph query that specifies one of a plurality of entities to be used to query a knowledge base graph that represents the plurality of entities. A feature vector is constructed, by the computing device, having a number of indicator variables, each of which indicates observance of a sub-graph feature represented by a respective indicator variable in the knowledge base graph.
摘要:
Methods, systems, and media are provided for a dynamic batch strategy utilized in parallelization of online learning algorithms. The dynamic batch strategy provides a merge function on the basis of a threshold level difference between the original model state and an updated model state, rather than according to a constant or pre-determined batch size. The merging includes reading a batch of incoming streaming data, retrieving any missing model beliefs from partner processors, and training on the batch of incoming streaming data. The steps of reading, retrieving, and training are repeated until the measured difference in states exceeds a set threshold level. The measured differences which exceed the threshold level are merged for each of the plurality of processors according to attributes. The merged differences which exceed the threshold level are combined with the original partial model states to obtain an updated global model state.
摘要:
Methods, systems, and media are provided for a dynamic batch strategy utilized in parallelization of online learning algorithms. The dynamic batch strategy provides a merge function on the basis of a threshold level difference between the original model state and an updated model state, rather than according to a constant or pre-determined batch size. The merging includes reading a batch of incoming streaming data, retrieving any missing model beliefs from partner processors, and training on the batch of incoming streaming data. The steps of reading, retrieving, and training are repeated until the measured difference in states exceeds a set threshold level. The measured differences which exceed the threshold level are merged for each of the plurality of processors according to attributes. The merged differences which exceed the threshold level are combined with the original partial model states to obtain an updated global model state.
摘要:
A user may request a presentation of a content item set, such as a social network comprising a set of status messages or an image database comprising a set of images. However, the volume and diversity of content items of the content item set may reduce the interest of the user in the presented content items. The potential interest of the user in the presented content items may be improved by selecting content items that are associated with one or more topics of potential interest to the user, and having a positive trending popularity among users of the content item set. Moreover, the interaction of the user with a presented content item may be monitored and used to determine the interest of the user in the topics associated with the presented content item and the popularity of the content item.