Machine-learning approach to modeling biological activity for molecular
design and to modeling other characteristics
    1.
    发明授权
    Machine-learning approach to modeling biological activity for molecular design and to modeling other characteristics 失效
    机器学习方法对分子设计的生物活性进行建模,并对其他特征进行建模

    公开(公告)号:US5526281A

    公开(公告)日:1996-06-11

    申请号:US382990

    申请日:1994-10-28

    摘要: Explicit representation of molecular shape of molecules is combined with neural network learning methods to provide models with high predictive ability that generalize to different chemical classes where structurally diverse molecules exhibiting similar surface characteristics are treated as similar. A new machine-learning methodology that can accept multiple representations of objects and construct models that predict characteristics of those objects. An extension of this methodology can be applied in cases where the representations of the objects are determined by a set of adjustable parameters. An iterative process applies intermediate models to generate new representations of the objects by adjusting said parameters and repeatedly retrains the models to obtain better predictive models. This method can be applied to molecules because each molecule can have many orientations and conformations (representations) that are determined by a set of translation, rotation and torsion angle parameters.

    摘要翻译: 分子分子形状的显式表示与神经网络学习方法相结合,以提供具有高预测能力的模型,将其泛化为不同的化学类别,其中表现出相似表面特征的结构多样的分子被认为是相似的。 一种新的机器学习方法,可以接受对象的多个表示,并构建预测这些对象特征的模型。 在通过一组可调参数确定对象的表示的情况下,可以应用该方法的扩展。 迭代过程通过调整所述参数并重复地重新模拟模型以获得更好的预测模型,应用中间模型来生成对象的新表示。 该方法可以应用于分子,因为每个分子可以具有由一组平移,旋转和扭转角参数确定的许多取向和构象(表示)。