摘要:
High throughput parallel LDPC decoders are designed and implemented using hierarchical design and layout optimization. In a first level of hierarchy, the node processors are grouped on the LDPC decoder chip, physically co-locating the processing elements in a small area. In a second level of hierarchy, clusters, e.g., subsets, of the processing elements are grouped together and a pipeline stage including pipeline registers is introduced on the boundaries between clusters. Register to register path propagating signals are keep localized as much as possible. The switching fabric coupling the node processors with edge message memory is partitioned into separate switches. Each separate switch is split into combinational switching layers. Design hierarchies are created for each layer, localizing the area where the interconnect is dense and resulting in short interconnect paths thus limiting signal delays in routing.
摘要:
High throughput parallel LDPC decoders are designed and implemented using hierarchical design and layout optimization. In a first level of hierarchy, the node processors are grouped on the LDPC decoder chip, physically co-locating the processing elements in a small area. In a second level of hierarchy, clusters, e.g., subsets, of the processing elements are grouped together and a pipeline stage including pipeline registers is introduced on the boundaries between clusters. Register to register path propagating signals are keep localized as much as possible. The switching fabric coupling the node processors with edge message memory is partitioned into separate switches. Each separate switch is split into combinational switching layers. Design hierarchies are created for each layer, localizing the area where the interconnect is dense and resulting in short interconnect paths thus limiting signal delays in routing.