摘要:
An imaging system and method incorporate an apparatus and method for cleaning developer liquid from an imaging substrate such as a photoreceptor. The system and method operate to move the imaging substrate in a first direction, form a latent electrostatic image on an imaging region of the imaging substrate, engage a development device in proximity with the imaging substrate, load a squeegee roller against the imaging substrate, the squeegee roller being driven by the imaging substrate in the first direction, apply developer liquid from the development device to the imaging region, thereby developing the latent electrostatic image, terminate application of developer liquid from the development device upon movement of a nonimaging region of the imaging substrate past the development device, wherein the disengagement of the development device leaves on the imaging substrate a second excess volume of the developer liquid, drive the squeegee roller in a second direction upon movement of the nonimaging region past the squeegee roller, the squeegee roller substantially removing the second excess volume of developer liquid, and transfer the developer liquid remaining on the imaging region to an imaging substrate, thereby forming a representation of an image.
摘要:
A development apparatus for developing a latent electrostatic image on an imaging substrate in a liquid electrographic imaging system includes a cleaning roller for removing back-plated developer from a development device such as a development roller, and a squeegee apparatus for.sub.-- removing both "drip-line" developer liquid and "wrap-around" developer liquid from the imaging substrate. The squeegee apparatus may include a squeegee roller having a crowned profile and a loading mechanism configured to achieve a uniform loading force across a pressure nip formed between the squeegee roller and the imaging substrate. The cleaning roller may include a fiber cleaning media and fluid delivery means for flushing back-plated developer from the cleaning media. The development apparatus also may include means for spacing the development apparatus relative to the imaging substrate without contacting the imaging substrate, thereby avoiding disruption of the motion quality of the imaging substrate.
摘要:
A magnetic recording medium exhibits reduced magnetic flux modulation and improved signal-to-noise ratio. The magnetic recording medium may take the form of a magnetic tape or a magnetic disk. Providing a magnetic recording layer with a more uniform thickness can improve the magnetic flux modulation characteristic. For example, the magnetic recording medium may have a coercivity of greater than or equal to 2000 Oerstads with a magnetic flux modulation characteristic having a one sigma standard deviation of less than 0.06. In some cases, the magnetic flux modulation characteristic may have a one sigma standard deviation of less than 0.05, or even 0.04. Reduced magnetic flux modulation can support increased storage densities.
摘要:
An imaging system and method incorporate an apparatus and method for cleaning developer liquid from an imaging substrate such as a photoreceptor. The system and method operate to move the imaging substrate in a first direction, form a latent electrostatic image on an imaging region of the imaging substrate, engage a development device in proximity with the imaging substrate, load a squeegee roller against the imaging substrate, the squeegee roller being driven by the imaging substrate in the first direction, apply developer liquid from the development device to the imaging region, thereby developing the latent electrostatic image, terminate application of developer liquid from the development device upon movement of a nonimaging region of the imaging substrate past the development device, wherein the disengagement of the development device leaves on the imaging substrate a second excess volume of the developer liquid, drive the squeegee roller in a second direction upon movement of the nonimaging region past the squeegee roller, the squeegee roller substantially removing the second excess volume of developer liquid, and transfer the developer liquid remaining on the imaging region to an imaging substrate, thereby forming a representation of an image.
摘要:
A development apparatus for developing a latent electrostatic image on an imaging substrate in a liquid electrographic imaging system includes a cleaning roller for removing back-plated developer from a development device such as a development roller, and a squeegee apparatus for removing both "drip-line" developer liquid and "wrap-around" developer liquid from the imaging substrate. The squeegee apparatus may include a squeegee roller having a crowned profile and a loading mechanism configured to achieve a uniform loading force across a pressure nip formed between the squeegee roller and the imaging substrate. The cleaning roller may include a fiber cleaning media and fluid delivery means for flushing back-plated developer from the cleaning media. The development apparatus also may include means for spacing the development apparatus relative to the imaging substrate without contacting the imaging substrate, thereby avoiding disruption of the motion quality of the imaging substrate.
摘要:
An apparatus and method for removing excess developer liquid from an imaging substrate make use of a squeegee roller, and a mechanism for loading the squeegee roller against the imaging substrate. The squeegee roller removes the excess developer liquid from the imaging substrate at an upstream side of the squeegee roller relative to a direction of movement of the imaging substrate. A portion of the excess developer liquid can pass to a downstream side of the squeegee roller, however, and be transferred from the squeegee roller to the imaging substrate. A second developer liquid removal mechanism is provided to remove from the imaging substrate the portion of the excess developer liquid transferred from the squeegee roller. The second developer liquid removal mechanism may include a second squeegee roller mounted at a position adjacent the downstream side of the first squeegee roller. The second squeegee roller can include first and second squeegee sections that contact the imaging substrate at positions outside of the imaging region. The second squeegee roller can be driven in a direction opposite to the direction of movement of the imaging substrate to effectively remove the excess developer liquid.
摘要:
A magnetic recording tape exhibits reduced magnetic flux modulation and improved signal-to-noise ratio. Providing a magnetic recording layer with a more uniform thickness can improve the magnetic flux modulation characteristic. For example, the magnetic recording tape may have a coercivity of greater than or equal to 2000 Oe with a magnetic flux modulation characteristic having a one sigma standard deviation of less than 0.06. In some cases, the magnetic flux modulation characteristic may have a one sigma standard deviation of less than 0.05, or even 0.04. Reduced magnetic flux modulation can support increased storage densities.