摘要:
A method and system for non-invasive hemodynamic assessment of aortic coarctation from medical image data, such as magnetic resonance imaging (MRI) data is disclosed. Patient-specific lumen anatomy of the aorta and supra-aortic arteries is estimated from medical image data of a patient, such as contrast enhanced MRI. Patient-specific aortic blood flow rates are estimated from the medical image data of the patient, such as velocity encoded phase-contrasted MRI cine images. Patient-specific inlet and outlet boundary conditions for a computational model of aortic blood flow are calculated based on the patient-specific lumen anatomy, the patient-specific aortic blood flow rates, and non-invasive clinical measurements of the patient. Aortic blood flow and pressure are computed over the patient-specific lumen anatomy using the computational model of aortic blood flow and the patient-specific inlet and outlet boundary conditions.
摘要:
A method and system for non-invasive hemodynamic assessment of aortic coarctation from medical image data, such as magnetic resonance imaging (MRI) data is disclosed. Patient-specific lumen anatomy of the aorta and supra-aortic arteries is estimated from medical image data of a patient, such as contrast enhanced MRI. Patient-specific aortic blood flow rates are estimated from the medical image data of the patient, such as velocity encoded phase-contrasted MRI cine images. Patient-specific inlet and outlet boundary conditions for a computational model of aortic blood flow are calculated based on the patient-specific lumen anatomy, the patient-specific aortic blood flow rates, and non-invasive clinical measurements of the patient. Aortic blood flow and pressure are computed over the patient-specific lumen anatomy using the computational model of aortic blood flow and the patient-specific inlet and outlet boundary conditions.