摘要:
A system controller for position controlling a photovoltaic (PV) panel in a PV system including a power sensor sensing output power (P), and a motor for positioning the PV panel. The system controller includes a computing device having memory that provides motor control signals and implements an iterative adaptive control (IAC) algorithm stored in the memory for adjusting an angle of the PV panel. The IAC algorithm includes an iterative relation that relates P at current time k (P(k)), its elevation angle at k (θs (k)), P after a next step (P(k+1)) and its elevation angle at k+1 (θs (k+1)). The IAC algorithm generates a perturbed power value P(k+1) to provide a power perturbation to P(k), and calculates a position angle θS (k+1) of the PV panel using the perturbed power value. The motor control signals from the computing device cause the motor to position the PV panel to achieve θS (k+1).
摘要:
A system controller for position controlling a photovoltaic (PV) panel in a PV system including a power sensor sensing output power (P), and a motor for positioning the PV panel. The system controller includes a computing device having memory that provides motor control signals and implements an iterative adaptive control (IAC) algorithm stored in the memory for adjusting an angle of the PV panel. The IAC algorithm includes an iterative relation that relates P at current time k (P(k)), its elevation angle at k (θs (k)), P after a next step (P(k+1)) and its elevation angle at k+1 (θs (k+1)). The IAC algorithm generates a perturbed power value P(k+1) to provide a power perturbation to P(k), and calculates a position angle θS (k+1) of the PV panel using the perturbed power value. The motor control signals from the computing device cause the motor to position the PV panel to achieve θS (k+1).
摘要:
The invention relates to representation of one and multidimensional signal vectors in multiple nonorthogonal domains and design of Vector Quantizers that can be chosen among these representations. There is presented a Vector Quantization technique in multiple nonorthogonal domains for both waveform and model based signal characterization. An iterative codebook accuracy enhancement algorithm, applicable to both waveform and model based Vector Quantization in multiple nonorthogonal domains, which yields further improvement in signal coding performance, is disclosed. Further, Vector Quantization in multiple nonorthogonal domains is applied to speech and exhibits clear performance improvements of reconstruction quality for the same bit rate compared to existing single domain Vector Quantization techniques. The technique disclosed herein can be easily extended to several other one and multidimensional signal classes.