Abstract:
A sense amplifier includes a first transistor having a gate electrode electrically connected to a bit line and a first electrode electrically connected to a complementary bit line. A second transistor has a gate electrode electrically connected to the complementary bit line and a first electrode electrically connected to the bit line. An equalizing transistor is disposed between the gate electrode of the first transistor and the gate electrode of the second transistor. The first electrode of the first transistor and a first electrode of the equalizing transistor are electrically connected to each other, and the first electrode of the second transistor and a second electrode of the equalizing transistor are electrically connected to each other.
Abstract:
A sense amplifier includes a first transistor having a gate electrode electrically connected to a bit line and a first electrode electrically connected to a complementary bit line. A second transistor has a gate electrode electrically connected to the complementary bit line and a first electrode electrically connected to the bit line. An equalizing transistor is disposed between the gate electrode of the first transistor and the gate electrode of the second transistor. The first electrode of the first transistor and a first electrode of the equalizing transistor are electrically connected to each other, and the first electrode of the second transistor and a second electrode of the equalizing transistor are electrically connected to each other.
Abstract:
Example embodiments relate to a semiconductor memory device that includes an address coding method for a multi-word line test, for example, an address coding method to test a semiconductor memory device having a cell block row selection circuit. The semiconductor memory device may include a plurality of memory cell blocks, where each memory cell block may include memory cells coupled to a bit line. The method may include coding row addresses of the memory cell block by dividing one or more row addresses corresponding to cell blocks of the memory cell block to create sub-cell blocks and adding the sub-cell blocs into the main cell blocks to create a logical memory block, which enables word lines of the main cell blocks and sub-cell blocks at the same time.
Abstract:
Example embodiments relate to a semiconductor memory device that includes an address coding method for a multi-word line test, for example, an address coding method to test a semiconductor memory device having a cell block row selection circuit. The semiconductor memory device may include a plurality of memory cell blocks, where each memory cell block may include memory cells coupled to a bit line. The method may include coding row addresses of the memory cell block by dividing one or more row addresses corresponding to cell blocks of the memory cell block to create sub-cell blocks and adding the sub-cell blocs into the main cell blocks to create a logical memory block, which enables word lines of the main cell blocks and sub-cell blocks at the same time.