摘要:
Disclosed systems and methods provide automated log quality monitoring, thereby enabling fast, on-site determination of log quality by logging engineers as well as re-assurance to interpreters faced with geologically-improbable features in the logs. Such uses can provide early detection of logging issues, increase confidence in acquired logs, reduce unnecessary duplication of effort, and improve the reputation of the logging company. In at least some embodiments, log monitoring software applies a comparison function to axially-spaced (and/or azimuthally-spaced) sensors. The comparison function can be, inter alia, cross-correlation, mutual information, mean-square error, and ratio image uniformity, each of which can be determined as a function of a sliding window position to indicate regions wherein the log quality falls below a threshold value. It is not necessary for the log sensors to be of the same type, e.g., resistivity image sensors.
摘要:
Disclosed systems and methods provide automated log quality monitoring, thereby enabling fast, on-site determination of log quality by logging engineers as well as re-assurance to interpreters faced with geologically-improbable features in the logs. Such uses can provide early detection of logging issues, increase confidence in acquired logs, reduce unnecessary duplication of effort, and improve the reputation of the logging company. In at least some embodiments, log monitoring software applies a comparison function to axially-spaced (and/or azimuthally-spaced) sensors. The comparison function can be, inter alia, cross-correlation, mutual information, mean-square error, and ratio image uniformity, each of which can be determined as a function of a sliding window position to indicate regions wherein the log quality falls below a threshold value. It is not necessary for the log sensors to be of the same type, e.g., resistivity image sensors.
摘要:
A system and method for perceiving drilling learning through visualization is provided. In one embodiment using three-dimensional visualization of the earth model as a foundation, a new IT development strategy focuses on perceiving “Drilling Learning” by an intuitive method. Symbols, known as “Knowledge Attachments” are attached to each wellbore trajectory displayed in the three-dimensional environment, with each symbol indicating a specific event—such as one related to drilling operations or problems. A Knowledge Attachment system proves particularly useful to represent disparate data at once, in such a manner that the interdependencies between the earth model and drilling operational data are evident and correlated. Operational issues and lessons learned from prior wells are easily accessed and perceived in the context of the earth model. By understanding this information at the beginning of the well planning process, operational efficiencies may be improved.
摘要:
A system and method for perceiving drilling learning through visualization is provided. In one embodiment using three-dimensional visualization of the earth model as a foundation, a new IT development strategy focuses on perceiving “Drilling Learning” by an intuitive method. Symbols, known as “Knowledge Attachments” are attached to each wellbore trajectory displayed in the three-dimensional environment, with each symbol indicating a specific event—such as one related to drilling operations or problems. A Knowledge Attachment system proves particularly useful to represent disparate data at once, in such a manner that the interdependencies between the earth model and drilling operational data are evident and correlated. Operational issues and lessons learned from prior wells are easily accessed and perceived in the context of the earth model. By understanding this information at the beginning of the well planning process, operational efficiencies may be improved.
摘要:
A system and method for perceiving drilling learning through visualization is provided. In one embodiment using three-dimensional visualization of the earth model as a foundation, a new IT development strategy focuses on perceiving “Drilling Learning” by an intuitive method. Symbols, known as “Knowledge Attachments” are attached to each wellbore trajectory displayed in the three-dimensional environment, with each symbol indicating a specific event—such as one related to drilling operations or problems. A Knowledge Attachment system proves particularly useful to represent disparate data at once, in such a manner that the interdependencies between the earth model and drilling operational data are evident and correlated. Operational issues and lessons learned from prior wells are easily accessed and perceived in the context of the earth model. By understanding this information at the beginning of the well planning process, operational efficiencies may be improved.