Belt composition for improving performance and flatness of thin
revolving endless flexible casting belts in continuous metal casting
machines

    公开(公告)号:US4915158A

    公开(公告)日:1990-04-10

    申请号:US203249

    申请日:1988-06-06

    IPC分类号: B22D11/06

    CPC分类号: B22D11/0668

    摘要: A method and belt composition for improving the performance and flatness of thin revolving flexible casting belts of continuous casting machines wherein at least one wall of the moving mold is provided by a thin flexible endless metallic casting belt having a permanent insulative coating with fluid-accessible porosity in this permanent coating. Contrary to prior methods and apparatus which have sought to protect the wide thin casting belts, the present method for improving belt flatness and performance involves providing a Helium-containing gaseous film between the metal and the front face of the casting belt which is coated with a permanent insulative porous coating. For significantly improved results, this gaseous film contains at least 8 percent and preferably 15 percent and optimally 20 percent or more of Helium by volume and is non-reactive with the metal being cast, resulting in a controlled increase in the rate of heat transfer and for causing such heat transfer to become more nearly uniform and stabilized across the width of the flexible casting belt than in prior continuous casting machines of the same moving mold cross-sectional shape and size. The freezing rate advantageously becomes stabilized at a substantially higher and more uniform rate, the belt flatness becomes stabilized and the cast metallic product is thereby substantially improved both in metallurgy and surface appearance. Also, copper or copper alloy casting belts are used in certain embodiments for enhancing heat-transfer effects and belt flatness. During casting at a given speed, the freezing rate and exit temperature of the metal being continuously cast can be controlled by varying the helium percentage in the gaseous film itself. In twin-belt machines, relative heat-transfer rates into upper and lower belts are controlled by adjusting the relative helium percentages in their respective gas films.