Abstract:
Wireless telecommunications networks may implement various forms of authentication. There are a variety of different user and device authentication protocols that follow a similar network architecture, involving various network entities such as a user equipment (UE), a service provider (SP), and an authentication endpoint (AEP). To select an acceptable authentication protocol or credential for authenticating a user or UE, authentication protocol negotiations may take place between various network entities. For example, negotiations may take place in networks implementing a single-sign on (SSO) architecture and/or networks implementing a Generic Bootstrapping Architecture (GBA).
Abstract:
Wireless telecommunications networks may implement various forms of authentication. There are a variety of different user and device authentication protocols that follow a similar network architecture, involving various network entities such as a user equipment (UE), a service provider (SP), and an authentication endpoint (AEP). To select an acceptable authentication protocol or credential for authenticating a user or UE, authentication protocol negotiations may take place between various network entities. For example, negotiations may take place in networks implementing a single-sign on (SSO) architecture and/or networks implementing a Generic Bootstrapping Architecture (GBA).
Abstract:
At least data link information generated at a medium access control layer or physical link information generated at a physical layer is used to send information to a media independent handover layer.
Abstract:
A method and apparatus for interworking between a mobile network operator and an application provider are disclosed. A network application function (NAF) may be co-located with an OpenID provider such that an application server may communicate with the NAF to access a home subscriber server (HSS) via a bootstrapping server function (BSF). The interfaces between BSF and HSS, and between BSF and NAF may be enhanced to carry information that is available through Sh interface between the application server and the HSS. When the WTRU is roaming in a visited network, the application server may communicate with the visited network for charging and policing for serving the service request from the WTRU. The application server may be co-located with an NAF, and may authenticate the WTRU using Generic Bootstrapping Architecture, and may communicate with a BSF in a home network via an eZn-proxy function to access an HSS.
Abstract:
Persistent communication layer credentials generated on a persistent communication layer at one network may be leveraged to perform authentication on another. For example, the persistent communication layer credentials may include application-layer credentials derived on an application layer. The application-layer credentials may be used to establish authentication credentials for authenticating a mobile device for access to services at a network server. The authentication credentials may be derived from the application-layer credentials of another network to enable a seamless handoff from one network to another. The authentication credentials may be derived from the application-layer credentials using reverse bootstrapping or other key derivation functions. The mobile device and/or network entity to which the mobile device is being authenticated may enable communication of authentication information between the communication layers to enable authentication of a device using multiple communication layers.
Abstract:
Persistent communication layer credentials generated on a persistent communication layer at one network may be leveraged to perform authentication on another. For example, the persistent communication layer credentials may include application-layer credentials derived on an application layer. The application-layer credentials may be used to establish authentication credentials for authenticating a mobile device for access to services at a network server. The authentication credentials may be derived from the application-layer credentials of another network to enable a seamless handoff from one network to another. The authentication credentials may be derived from the application-layer credentials using reverse bootstrapping or other key derivation functions. The mobile device and/or network entity to which the mobile device is being authenticated may enable communication of authentication information between the communication layers to enable authentication of a device using multiple communication layers.
Abstract:
At least one trigger at a point-to-point protocol layer indicating a status of a point-to-point link is generated and sent to a media independent handover entity.