-
公开(公告)号:US20110029466A1
公开(公告)日:2011-02-03
申请号:US12906010
申请日:2010-10-15
申请人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
发明人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
CPC分类号: G06F17/3053 , G06N7/005 , Y10S707/99931 , Y10S707/99933
摘要: A method and system for rank aggregation of entities based on supervised learning is provided. A rank aggregation system provides an order-based aggregation of rankings of entities by learning weights within an optimization framework for combining the rankings of the entities using labeled training data and the ordering of the individual rankings. The rank aggregation system is provided with multiple rankings of entities. The rank aggregation system is also provided with training data that indicates the relative ranking of pairs of entities. The rank aggregation system then learns weights for each of the ranking sources by attempting to optimize the difference between the relative rankings of pairs of entities using the weights and the relative rankings of pairs of entities of the training data.
摘要翻译: 提供了一种基于监督学习的实体等级聚合的方法和系统。 排名聚合系统通过在优化框架内学习权重来提供实体排序的基于订单的聚合,以使用标记的训练数据和个体排名的顺序组合实体的排名。 排名聚合系统提供多个实体排名。 等级聚合系统还提供了指示实体对的相对排名的训练数据。 秩聚合系统然后通过尝试使用训练数据的实体对的权重和相对排名来优化实体对的相对排名之间的差异来学习每个排名来源的权重。
-
公开(公告)号:US08005784B2
公开(公告)日:2011-08-23
申请号:US12906010
申请日:2010-10-15
申请人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
发明人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
CPC分类号: G06F17/3053 , G06N7/005 , Y10S707/99931 , Y10S707/99933
摘要: A method and system for rank aggregation of entities based on supervised learning is provided. A rank aggregation system provides an order-based aggregation of rankings of entities by learning weights within an optimization framework for combining the rankings of the entities using labeled training data and the ordering of the individual rankings. The rank aggregation system is provided with multiple rankings of entities. The rank aggregation system is also provided with training data that indicates the relative ranking of pairs of entities. The rank aggregation system then learns weights for each of the ranking sources by attempting to optimize the difference between the relative rankings of pairs of entities using the weights and the relative rankings of pairs of entities of the training data.
摘要翻译: 提供了一种基于监督学习的实体等级聚合的方法和系统。 排名聚合系统通过在优化框架内学习权重来提供实体排序的基于订单的聚合,以使用标记的训练数据和个体排名的顺序组合实体的排名。 排名聚合系统提供多个实体排名。 等级聚合系统还提供了指示实体对的相对排名的训练数据。 秩聚合系统然后通过尝试使用训练数据的实体对的权重和相对排名来优化实体对的相对排名之间的差异来学习每个排名来源的权重。
-
公开(公告)号:US07840522B2
公开(公告)日:2010-11-23
申请号:US11682963
申请日:2007-03-07
申请人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
发明人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
IPC分类号: G06F15/18
CPC分类号: G06F17/3053 , G06N7/005 , Y10S707/99931 , Y10S707/99933
摘要: A method and system for rank aggregation of entities based on supervised learning is provided. A rank aggregation system provides an order-based aggregation of rankings of entities by learning weights within an optimization framework for combining the rankings of the entities using labeled training data and the ordering of the individual rankings. The rank aggregation system is provided with multiple rankings of entities. The rank aggregation system is also provided with training data that indicates the relative ranking of pairs of entities. The rank aggregation system then learns weights for each of the ranking sources by attempting to optimize the difference between the relative rankings of pairs of entities using the weights and the relative rankings of pairs of entities of the training data.
摘要翻译: 提供了一种基于监督学习的实体等级聚合的方法和系统。 排名聚合系统通过在优化框架内学习权重来提供实体排序的基于订单的聚合,以使用标记的训练数据和个体排名的顺序组合实体的排名。 排名聚合系统提供多个实体排名。 等级聚合系统还提供了指示实体对的相对排名的训练数据。 秩聚合系统然后通过尝试使用训练数据的实体对的权重和相对排名来优化实体对的相对排名之间的差异来学习每个排名来源的权重。
-
公开(公告)号:US20080222062A1
公开(公告)日:2008-09-11
申请号:US11682963
申请日:2007-03-07
申请人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
发明人: Tie-Yan Liu , Hang Li , Yu-Ting Liu
CPC分类号: G06F17/3053 , G06N7/005 , Y10S707/99931 , Y10S707/99933
摘要: A method and system for rank aggregation of entities based on supervised learning is provided. A rank aggregation system provides an order-based aggregation of rankings of entities by learning weights within an optimization framework for combining the rankings of the entities using labeled training data and the ordering of the individual rankings. The rank aggregation system is provided with multiple rankings of entities. The rank aggregation system is also provided with training data that indicates the relative ranking of pairs of entities. The rank aggregation system then learns weights for each of the ranking sources by attempting to optimize the difference between the relative rankings of pairs of entities using the weights and the relative rankings of pairs of entities of the training data.
摘要翻译: 提供了一种基于监督学习的实体等级聚合的方法和系统。 排名聚合系统通过在优化框架内学习权重来提供实体排序的基于订单的聚合,以使用标记的训练数据和个体排名的顺序组合实体的排名。 排名聚合系统提供多个实体排名。 等级聚合系统还提供了指示实体对的相对排名的训练数据。 秩聚合系统然后通过尝试使用训练数据的实体对的权重和相对排名来优化实体对的相对排名之间的差异来学习每个排名来源的权重。
-
-
-