摘要:
A method for measuring a shafting mechanical fatigue of a turbine generator set, which involves determining a lumped mass model of a turbine generator set and its parameters; calculating a model frequency and a mode shape of the turbine generator set; acquiring an angular velocity change at a machine end; calculating a torque at a calculating section of shafting based on the model frequency, a mode shape curve and an equivalent rigidity of the lumped mass model, so as to obtain a torque-time history curve at the calculating section of the shafting; calculating a fatigue damage accumulative value for a dangerous section of a set shafting under a certain malfunction or disturbance, that is, the shafting mechanical fatigue of the turbine generator set.
摘要:
The present invention relates to the coordinated control method of torsional stress relay in large thermal power plants' generators (300 MW and above), which will be adopted when shaft torsional oscillations occur. This invention also publishes a method of realizing selective trip the generators and the trip criterions which are implemented by the torsional stress relay and coordinated control master station (Tmaster). Tmaster will real-time monitor the operating status of the generators and TSR, TMaster will also real-time generate a trip priority level sequencing by analyzing the unit output.When generators occur subsynchronous resonance and shaft torsional oscillation, this method can ensure that TSR will trip some generators of the power plant according to the real-time generated trip strategy to inhibit the shaft torsional oscillation and safeguard the units. This method can also avoid the tremendous economic loss caused by tripping all the generators, and that will reduce the hazard to the transmission grid.
摘要:
The present invention relates to the coordinated control method of torsional stress relay in large thermal power plants' generators (300 MW and above), which will be adopted when shaft torsional oscillations occur. This invention also publishes a method of realizing selective trip the generators and the trip criterions which are implemented by the torsional stress relay and coordinated control master station (Tmaster). Tmaster will real-time monitor the operating status of the generators and TSR, TMaster will also real-time generate a trip priority level sequencing by analyzing the unit output.When generators occur subsynchronous resonance and shaft torsional oscillation, this method can ensure that TSR will trip some generators of the power plant according to the real-time generated trip strategy to inhibit the shaft torsional oscillation and safeguard the units. This method can also avoid the tremendous economic loss caused by tripping all the generators, and that will reduce the hazard to the transmission grid.
摘要:
A method for measuring mechanical fatigue in shafts forming part of a turbine generator set, which involves determining a lumped mass model of a turbine generator set and its parameters; calculating a model frequency and a mode shape of the turbine generator set; acquiring an angular velocity change at a machine end; calculating a torque at a calculating section of shafting based on the model frequency, a mode shape curve and an equivalent rigidity of the lumped mass model, so as to obtain a torque-time history curve at the calculating section of the shafting; calculating a fatigue damage accumulative value for a dangerous section of a set shafting under a certain malfunction or disturbance, that is, the shafting mechanical fatigue of the turbine generator set.