Abstract:
The present disclosure relates to a temporary mobility kit for repairing tires, including: an air compressor; a sealant assembly selectively connected to the air compressor; a sealant hose in the sealant assembly, configured to connect the air compressor to a tire valve; and a first circuit configured to assess a connection condition.
Abstract:
The present disclosure relates to temporary mobility kits that repair punctured tires. Some embodiments of the kit include an air compressor; a sealant assembly selectively connected to the pump; a sealant hose in the sealant assembly, configured to connect the air compressor to a tire valve; and a first circuit configured to assess a connection condition.
Abstract:
The present disclosure relates to temporary mobility kits that repair punctured tires. Some embodiments of the kit include an air compressor; a sealant assembly selectively connected to the pump; a sealant hose in the sealant assembly, configured to connect the air compressor to a tire valve; and a first circuit configured to assess a connection condition.
Abstract:
The present disclosure relates to a temporary mobility kit for repairing tires, including: an air compressor; a sealant assembly selectively connected to the air compressor; a sealant hose in the sealant assembly, configured to connect the air compressor to a tire valve; and a first circuit configured to assess a connection condition.
Abstract:
A temporary mobility kit to minimize or prevent the inadvertent outflow of tire sealant is provided. The temporary mobility kit includes a switch-inflator assembly and a removable sealant assembly. The switch-inflator assembly includes an air inflator and an associated hose for inflating a tire. The switch-inflator assembly further includes a diverter switch, a power-on, power-off switch, and an air pressure gauge. The diverter switch is a user-operated switch which moves an associated diverter valve between an air inflation function and a sealing function. The sealant assembly includes a sealant hose having a sealant tire valve connector. Electrical wires are provided in operative association with the sealant hose and electrically connect the sealant tire valve connector and the sealant assembly. A circuit arrangement is provided which prevents the inadvertent outflow of tire sealant through a logic arrangement which includes a reset circuit.
Abstract:
A temporary mobility kit to minimize or prevent the inadvertent outflow of tire sealant is provided. The temporary mobility kit includes a switch-inflator assembly and a removable sealant assembly. The switch-inflator assembly includes an air inflator and an associated hose for inflating a tire. The switch-inflator assembly further includes a diverter switch, a power-on, power-off switch, and an air pressure gauge. The diverter switch is a user-operated switch which moves an associated diverter valve between an air inflation function and a sealing function. The sealant assembly includes a sealant hose having a sealant tire valve connector. Electrical wires are provided in operative association with the sealant hose and electrically connect the sealant tire valve connector and the sealant assembly. A circuit arrangement is provided which prevents the inadvertent outflow of tire sealant through a logic arrangement which includes a reset circuit.
Abstract:
The present invention is a logic circuit and a special module of BIOS for a computer motherboard that automatically reconfigures the motherboard to accept different microprocessors, (CPUs). Each series of CPUs includes different types having different parameters including: manufacturers; basic frequencies; multipliers; and operating voltages. These different parameters must be set on a conventional motherboard by opening and closing jumpers and/or dip-switches. The present invention avoids the need for changing these jumpers or switches by using the Basic Input/Output System, (BIOS), to instruct a logic circuit to set the proper voltage, frequency and multiplier for the specific CPU installed in the motherboard. When a user wishes to upgrade their computer, they remove the old CPU, insert the new CPU and turn on the computer. When the computer "powers up" the operating system senses whether a "hot key", (this can be preprogrammed to be any of the keys on the keyboard), is being or has been pressed. When the hot key has been pressed, the computer enters BIOS setup and the operator can then change the CPU parameters, (voltage, frequency and multiplier), as displayed on the screen. If the hot key is not pressed, the computer simply uses the parameters as previously defined. As with conventional personal computers, the BIOS can be entered from resets other than power-up and the CPU configuration can be changed without turning the computer off.