摘要:
A configuration method of a cryptographically generated address (CGA) is disclosed. The configuration method is used to enable a generated CGA to satisfy requirements of a network configuration, and includes the following steps. A Dynamic Host Configuration Protocol (DHCP) server receives a client configuration information sent from a client. The DHCP server generates a CGA according to the client configuration and the network configuration from the DHCP server. The DHCP server delivers the CGA to the client. The network configuration is made as a reference when the CGA is generated, which overcomes a disadvantage that the CGA generated by the client cannot satisfy the requirements of the network configuration in the prior art. Thus, the generation of CGA can be intervened at a network management level, and a management capability of the network is improved.
摘要:
A configuration method of a cryptographically generated address (CGA) is disclosed. The configuration method is used to enable a generated CGA to satisfy requirements of a network configuration, and includes the following steps. A Dynamic Host Configuration Protocol (DHCP) server receives a client configuration information sent from a client. The DHCP server generates a CGA according to the client configuration and the network configuration from the DHCP server. The DHCP server delivers the CGA to the client. The network configuration is made as a reference when the CGA is generated, which overcomes a disadvantage that the CGA generated by the client cannot satisfy the requirements of the network configuration in the prior art. Thus, the generation of CGA can be intervened at a network management level, and a management capability of the network is improved.
摘要:
A method, a system and an apparatus for fast handover, and relates to the field of mobile communication. The method is to create a fixed tunnel relationship between the PAR and the NAR, where a current host route of an MN at the access routers PAR and NAR is created; and the access routers (PAR and NAR) and the MN encapsulating a message according to the current host route information of the MN, and transferring the message through a tunnel. The apparatus includes a tunnel creating module, a host route creating module, a neighbor relationship creating module, and a transferring module. The technical solution under the present disclosure needs to create only one tunnel, which improves the router efficiency greatly and makes the handover process smoother.
摘要:
A method, an apparatus and a system for obtaining a Media Independent Handover (MIH) service information. The method including: receiving an MIH service information request message from a mobile node; obtaining the MIH service information requested by the mobile node; and sending a response message to the mobile node, with the obtained MIH service information carried in the response message.
摘要:
A method, an apparatus and a system for obtaining a Media Independent Handover (MIH) service information. The method including: receiving an MIH service information request message from a mobile node; obtaining the MIH service information requested by the mobile node; and sending a response message to the mobile node, with the obtained MIH service information carried in the response message.
摘要:
A method, an apparatus, and a system for configuring a key are provided. The method includes the following steps. A mobile node (MN) and an authentication authorization accounting home server (AAAH) generate a domain specific root key (DSRK) of a visited domain respectively. The AAAH sends the DSRK to an AAA visited server (AAAV). The MN and the AAAV generate a domain specific media independent handover service root key (DS-MIHS-RK) by using the DSRK respectively. The AAAV sends the DS-MIHS-RK to a visited domain media independent handover (MIH) authenticator. Thus, cumbersomeness and risks of errors in configuring and authenticating a password manually are avoided, so that large-scale and secure deployment of the MIH service becomes possible.
摘要:
A method for transmitting a media independent handover (MIH) message includes the following steps: The MIH message is divided into segments and the segments are encapsulated into transmission control protocol (TCP) segments; the TCP segments are then encapsulated into Internet protocol (IP) data packets; the IP data packets is transmitted to a receiving end. The method, system, and device for transmitting an MIH message described herein provide flow controls for the MIH message transmission, thereby enhancing the transmission efficiency of the MIH message.
摘要:
A method, an apparatus, and a system for configuring a key are provided. The method includes the following steps. A mobile node (MN) and an authentication authorization accounting home server (AAAH) generate a domain specific root key (DSRK) of a visited domain respectively. The AAAH sends the DSRK to an AAA visited server (AAAV). The MN and the AAAV generate a domain specific media independent handover service root key (DS-MIHS-RK) by using the DSRK respectively. The AAAV sends the DS-MIHS-RK to a visited domain media independent handover (MIH) authenticator. Thus, cumbersomeness and risks of errors in configuring and authenticating a password manually are avoided, so that large-scale and secure deployment of the MIH service becomes possible.
摘要:
A method for transmitting a media independent handover (MIH) message includes the following steps: The MIH message is divided into segments and the segments are encapsulated into transmission control protocol (TCP) segments; the TCP segments are then encapsulated into Internet protocol (IP) data packets; the IP data packets is transmitted to a receiving end. The method, system, and device for transmitting an MIH message described herein provide flow controls for the MIH message transmission, thereby enhancing the transmission efficiency of the MIH message.
摘要:
A method for transferring an IP transmission session is disclosed, including the following: a transmission session is created between the first node and second node based on a single IP protocol; the first node and second node obtain a transferable address pair by exchanging the session transfer management signaling; the transferable address pair is checked for bidirectional reachability; the transferable address pair is available if reachable in both directions, or is not available if unreachable in either direction; and the transmission session is transferred through the available transferable address pair. An apparatus for transferring an IP transmission session is also disclosed. Through the technical solution under the present disclosure, a session can be transferred in a network where IPv4 coexists with IPv6 without substantially affecting continuity of the end-to-end transmission session, thus fulfilling the requirements in the transition period during which IPv4 coexists with IPv6.