摘要:
The electronic circuit is intended to form with an antenna a responder that operates without resetting to zero when the power supply of the electronic circuit is switched on (without POR). To increase efficiency and reduce the costs of testing a plurality of such integrated circuits in a wafer, means are provided that allow the logic circuit (8) to be reset to zero during such a test by electrical contact with the pads (P1, P2) of each circuit by using two extractors (12 and 14) of clock signals (CL1 and CL2) connected to the inputs of a generator (20) of a zero reset signal (SR). The state of the generator is essentially given by the difference in pulses received from the two clock signal extractors. As soon as the state of the generator corresponds to a value equal to or greater than a predefined integer, the logic circuit is reset to zero, which never occurs with the responder receiving an interrogation signal of a reader.
摘要:
A half-duplex passive transponder including: a resonant circuit including an antenna and input capacitor and configured to allow an electrical signal to oscillate in the resonant circuit when periodically receiving across the antenna an activation signal from a reader; at least one switch between the input capacitor and a storage capacitor so the two capacitors are in parallel when the switch is turned on; a peak voltage detector configured to measure amplitude of the electrical signal oscillating in the resonant circuit; and a variable voltage threshold determination circuit configured to trigger each of plucking pulses when voltage of the oscillating electrical signal substantially attains a variable voltage threshold in a respective period before an extremum of the oscillating electrical signal and in a half-cycle of the extremum, to thus deliver plucking pulses during a transmission period in the resonant circuit to maintain a certain amplitude of the oscillating electrical signal.
摘要:
A half-duplex passive transponder including: a resonant circuit including an antenna and input capacitor and configured to allow an electrical signal to oscillate in the resonant circuit when periodically receiving across the antenna an activation signal from a reader; at least one switch between the input capacitor and a storage capacitor so the two capacitors are in parallel when the switch is turned on; a peak voltage detector configured to measure amplitude of the electrical signal oscillating in the resonant circuit; and a variable voltage threshold determination circuit configured to trigger each of plucking pulses when voltage of the oscillating electrical signal substantially attains a variable voltage threshold in a respective period before an extremum of the oscillating electrical signal and in a half-cycle of the extremum, to thus deliver plucking pulses during a transmission period in the resonant circuit to maintain a certain amplitude of the oscillating electrical signal.
摘要:
The electronic circuit is intended to form with an antenna a responder that operates without resetting to zero when the power supply of the electronic circuit is switched on (without POR). To increase efficiency and reduce the costs of testing a plurality of such integrated circuits in a wafer, means are provided that allow the logic circuit (8) to be reset to zero during such a test by electrical contact with the pads (P1, P2) of each circuit by using two extractors (12 and 14) of clock signals (CL1 and CL2) connected to the inputs of a generator (20) of a zero reset signal (SR). The state of the generator is essentially given by the difference in pulses received from the two clock signal extractors. As soon as the state of the generator corresponds to a value equal to or greater than a predefined integer, the logic circuit is reset to zero, which never occurs with the responder receiving an interrogation signal of a reader.
摘要:
The transponder circuit comprises a double clock extractor unit (31, 32, 33), an antenna coil connected to a modulator rectifier block to supply a rectified supply voltage on the basis of a picked up radio-frequency signal, and a control logic receiving a clock signal (CLK) of the double clock extractor unit. The control logic supplies a modulation signal (MOD) to the modulator rectifier block as well as to the double clock extractor unit. A terminal (B1) of the antenna coil is connected to the double clock extractor unit, which comprises a first sensitive clock extractor, which is a comparator (32) with a sensitivity threshold defined by a low reference voltage (Vref), and a second clock extractor, which consists of two successive inverters (31, 33). The unit also comprises a multiplexer (37) to receive as input the clock signal (CLK_ON) of the first clock extractor (32) and the clock signal (CLK_OFF) of the second inverter clock extractor (31, 33), and to supply as output one of the selected clock signals (CLK). The unit additionally comprises a flip-flop (36), which receives as input the modulation signal and a combined signal depending on the modulation signal and the clock signal (CLK_OFF) of the second clock extractor. The flipflop supplies as output a selection signal (SEL) to the multiplexer depending on the status of each of the signals at the input of the flip-flop.
摘要:
The invention concerns a method of verifying the proper working of a transponder mounted on a rotating mobile element of a vehicle, characterized in that it includes the steps of: a) measuring a temperature value by means of a temperature sensor connected to the transponder; b) detecting breach of a overheat threshold; c) a monitoring operation carried out by a reader arranged in the vehicle and provided for communicating with the transponder, consisting in executing a command on one of the temperature sensitive elements of the transponder; d) the reader determining the state of the transponder as a function of the response or absence of any response to the command to be executed: (i) if the response is correct, the transponder is operational; (ii) if the response is incorrect, or in the absence of any response, the transponder is not operational.
摘要:
The transponder circuit comprises a double clock extractor unit (31, 32, 33), an antenna coil connected to a modulator rectifier block to supply a rectified supply voltage on the basis of a picked up radio-frequency signal, and a control logic receiving a clock signal (CLK) of the double clock extractor unit. The control logic supplies a modulation signal (MOD) to the modulator rectifier block as well as to the double clock extractor unit. A terminal (B1) of the antenna coil is connected to the double clock extractor unit, which comprises a first sensitive clock extractor, which is a comparator (32) with a sensitivity threshold defined by a low reference voltage (Vref), and a second clock extractor, which consists of two successive inverters (31, 33). The unit also comprises a multiplexer (37) to receive as input the clock signal (CLK_ON) of the first clock extractor (32) and the clock signal (CLK_OFF) of the second inverter clock extractor (31, 33), and to supply as output one of the selected clock signals (CLK). The unit additionally comprises a flip-flop (36), which receives as input the modulation signal and a combined signal depending on the modulation signal and the clock signal (CLK_OFF) of the second clock extractor. The flipflop supplies as output a selection signal (SEL) to the multiplexer depending on the status of each of the signals at the input of the flip-flop.
摘要:
The invention concerns a method of verifying the proper working of a transponder mounted on a rotating mobile element of a vehicle, characterized in that it includes the steps of: a) measuring a temperature value by means of a temperature sensor connected to the transponder; b) detecting breach of a overheat threshold; c) a monitoring operation carried out by a reader arranged in the vehicle and provided for communicating with the transponder, consisting in executing a command on one of the temperature sensitive elements of the transponder; d) the reader determining the state of the transponder as a function of the response or absence of any response to the command to be executed: (i) if the response is correct, the transponder is operational; (ii) if the response is incorrect, or in the absence of any response, the transponder is not operational.