Abstract:
A computer-controlled apparatus and method for fabricating three-dimensional articles in layerwise fashion is disclosed. Upon dispensing a layer of a fusible powder, a laser irradiates selected locations of that layer to fuse the powder into a cross-section of the article to be formed in that layer, such that the fused cross-sections fuse together into the article. The laser is controlled in a raster scan fashion across the selected locations of the powder layer. The parallel raster scan lines are separated from one another, centerline-to-centerline, according to a selected pitch, or fill scan spacing value. The positions of the parallel scan lines are determined with respect to a coordinate system at the powder layer, rather than with respect to boundaries of the cross-section being formed; in alternating layers, the parallel scan lines are offset from one another by one-half the pitch. This arrangement of the scan lines optimizes the structural strength of the article being formed, while minimizing the number of scans required to form the article.
Abstract:
A computer-controlled apparatus and method for fabricating three-dimensional articles in layerwise fashion is disclosed. Upon dispensing a layer of a fusible powder, a laser irradiates selected locations of that layer to fuse the powder into a cross-section of the article to be formed in that layer, such that the fused cross-sections fuse together into the article. The laser is controlled in a raster scan fashion across the selected locations of the powder layer. The raster scan lines are defined, for each cross-section, to achieve an optimal fill scan time. The optimal fill scan time is determined, by the computer estimating the fill scan time by rotating the cross-section over a plurality of rotational angles, and estimating the fill scan time for each of the rotated cross-sections for at least a sample of the fill scans necessary to form the article. The actual fill scan vectors to be used in selective laser sintering of the article are rotated, from a coordinate axis at the target plane, according to the rotation of the cross-section providing the lowest estimated fill scan time.