Abstract:
A converter arrangement can include a first rectifier having an AC input and a DC output with two DC output poles, a capacitance (C) connected between the DC output poles of the first rectifier, a second rectifier having an AC input with two AC input poles and a DC output with two DC output poles, wherein the DC output of the second rectifier is connected between the DC output poles of the first rectifier. A magnetic amplifier includes at least one control winding (L2) and at least one AC winding (L11, L12), wherein the at least one control winding is connected between the DC output poles of the first rectifier, and wherein the at least one AC winding (L2) of the magnetic amplifier is connected in series with the AC input of the second rectifier.
Abstract:
An exemplary method for charging a capacitance connected between DC poles of a three-phase active rectifier/inverter and a converter apparatus including a three-phase active rectifier/inverter having a capacitance connected between DC poles thereof, a three-phase filter and a three-phase step-down transformer. The active rectifier/inverter is configured to charge the capacitance connected between the DC poles of the active rectifier/inverter with a rectified secondary voltage of the transformer until a voltage of the capacitance reaches a first predetermined threshold voltage. In response to the voltage of the capacitance connected between the DC poles of the active rectifier/inverter reaching the first predetermined threshold voltage, the active/rectifier/inverter is configured to charge the capacitance with a boosted rectified secondary voltage of the transformer until the voltage of the capacitance reaches a second predetermined threshold voltage higher than the first predetermined threshold voltage.