Abstract:
An aircraft tail cone comprising a fuselage in which avionic equipment is housed. The tail cone comprises two lateral hatches formed in the fuselage, at least one hatch being formed on each of the two opposite sides of the fuselage. Each hatch is mounted removably with respect to the fuselage so as to take up a closed first position in which the hatch closes a lateral opening in the fuselage, and an open second position in which the open hatch allows access to the inside of the tail cone through the corresponding opening The avionic equipment that requires regular inspection and/or maintenance operations is housed in a part of the tail cone which is accessible through the two lateral openings in the fuselage to a person who remains on the outside of the fuselage.
Abstract:
An aircraft fuselage frame including a central element adapted to be located within the perimeter of the fuselage, and two lateral extensions projecting outside the perimeter of the fuselage from both sides of the central element that are a portion of a longitudinal structure of a lifting surface. The central element and the two lateral extensions are configured as an integrated piece.
Abstract:
In the case of an aircraft aft portion equipped with an engine mounting structure passing across the fuselage, assembly of the aft portion presents problems caused by the moving of the box structure of the mounting structure through lateral openings in the fuselage. In order to overcome these problems, a method of assembling an aircraft aft portion is proposed, in which method the box structure of the engine mounting structure is inserted into the fuselage through a top opening extending from one side of the fuselage to the other across a vertical midplane of the fuselage such that the top opening opens to the top and to the sides of the fuselage.
Abstract:
Internal shield in the rear fuselage of an aircraft having a propulsion system formed by two engines mounted on each side of it; the rear fuselage having at least a vertical symmetry plane; the rear fuselage being made of a composite material; the internal shield being located in said vertical symmetry plane and extended in an area that covers the possible trajectories of a set of pre-defined fragments detached from one of said engines in a failure event that would impact on critical elements of the opposite engine; the internal shield having a flat shape and an energy absorption capability that allows stopping said fragments. The invention also refers to a method for determining the area of an internal shield and to an aircraft having said internal shield.