摘要:
A method for manufacturing a bent article using an aluminum alloy with high strength and excellent corrosion resistance comprises: extruding a cast billet of an aluminum alloy including, by mass, 6.0 to 8.0% Zn, 1.50 to 3.50% Mg, 0.20 to 1.50% Cu, 0.10 to 0.25% Zr, 0.005 to 0.05% Ti, 0.3% or less Mn, 0.25% or less Sr, and the balance Al with inevitable impurities to obtain an extruded material; cooling the extruded material at an average rate of 500° C./min or less immediately after the extrusion processing; subjecting the cooled extruded material to preliminary heating treatment at a temperature within a range of 140 to 260° C. for 30 to 120 seconds within a predetermined time after the extrusion processing; bending the extruded material having undergone the preliminary heating treatment to obtain a bent article; and subjecting the bent article to artificial aging treatment.
摘要:
An aluminum alloy extruded material that exhibits high strength by air cooling immediately after extrusion processing and excellent stress corrosion cracking resistance, and a method for manufacturing the same are disclosed. The material includes, by mass: 6.0 to 8.0% of Zn, 1.50 to 2.70% of Mg, 0.20 to 1.50% of Cu, 0.005 to 0.05% of Ti, 0.10 to 0.25% of Zr, 0.3% or less of Mn, 0.05% or less of Cr, 0.25% or less of Sr, and 0.10 to 0.50% in total among Zr, Mn, Cr and Sr, with the balance being Al and unavoidable impurities.
摘要:
A method for producing an aluminum alloy extruded material includes: subjecting, to extrusion processing, a casted billet obtained from an aluminum alloy containing 6.0 to 8.0% by mass of Zn, 1.50 to 3.50% by mass of Mg, 0.20 to 1.50% by mass of Cu, 0.10 to 0.25% by mass of Zr, 0.005 to 0.05% by mass of Ti, 0.3% by mass or less of Mn, 0.25% by mass or less of Sr, contents of Mn, Zr and Sr being 0.10 to 0.50% by mass, with the balance being Al and inevitable impurities to obtain an extruded material; cooling the extruded material, immediately after the extrusion processing, to 100° C. or less at a cooling rate of 50 to 750° C./min; then subjecting the extruded material to a heat treatment at 110 to 270° C. and subjecting the extruded material to plastic working within a prescribed time after the heat treatment.
摘要:
An Al—Mg—Si-based high-strength aluminum alloy extruded shape exhibits excellent corrosion resistance and ductility, and exhibits excellent hardenability during extrusion (i.e., ensures high productivity). A method for producing the same is also disclosed. The high-strength aluminum alloy extruded shape includes 0.65 to 0.90 mass % of Mg, 0.60 to 0.90 mass % of Si, 0.20 to 0.40 mass % of Cu, 0.20 to 0.40 mass % of Fe, 0.10 to 0.20 mass % of Mn, and 0.005 to 0.1 mass % of Ti, with the balance being Al and unavoidable impurities, the aluminum alloy extruded shape having a stoichiometric Mg2Si content of 1.0 to 1.3 mass %, an excess Si content relative to stoichiometric Mg2Si of 0.10 to 0.30 mass %, and a total content of Fe and Mn of 0.35 mass % or more.