Abstract:
The invention relates to a can-combustor for a can-annular combustor arrangement in a gas turbine. The can combustor includes an essentially cylindrical casing with an axially upstream front panel and an axially downstream outlet end. The can combustor further includes a number of premixed burners, extending in an upstream direction from said front panel and having a burner exit, supported by this front panel, for supplying a fuel/air mixture into a combustion zone inside the casing. Up to four premixed burners are attached to the front panel in a substantially annular array. Each burner has a conical swirl generator and a mixing tube to induce a swirl flow of said fuel/air mixture.
Abstract:
The invention discloses a method for operating a gas turbine with sequential combustion, which gas turbine includes a compressor, a first combustor with a first combustion chamber and first burners, which receives compressed air from the compressor, a second combustor with a second combustion chamber and second burners, which receives hot gas from the first combustor with a predetermined second combustor inlet temperature, and a turbine, which receives hot gas from the second combustor. The CO emission for part-load operation is reduced by reducing the second combustor inlet temperature for base-load operation of the gas turbine, and increasing the second combustor inlet temperature when decreasing the gas turbine load (RLGT) from base-load to part-load.
Abstract:
The invention discloses a method for operating a gas turbine with sequential combustion, which gas turbine includes a compressor, a first combustor with a first combustion chamber and first burners, which receives compressed air from the compressor, a second combustor with a second combustion chamber and second burners, which receives hot gas from the first combustor with a predetermined second combustor inlet temperature, and a turbine, which receives hot gas from the second combustor. The CO emission for part-load operation is reduced by reducing the second combustor inlet temperature for base-load operation of the gas turbine, and increasing the second combustor inlet temperature when decreasing the gas turbine load (RLGT) from base-load to part-load.